首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In addition to their well-studied ability to transactivate the expression of many genes, estrogen receptors (ERs) also effect cytoplasmic changes occurring too quickly to be accounted for by gene expression. Indeed, these immediate, "nongenomic" effects have been intensely studied, but the identification of important protein partners in quick ER-mediated signaling has lagged behind. Now, Wong et al. have identified MNAR (modulator of nongenomic activity of estrogen receptor) as an adaptor protein that allows the ER to bridge the signaling pathways of tyrosine kinases (i.e., Src) and the mitogen-activated protein kinase (MAPK) cascade. The MNAR-ER complex also appears to positively influence ER-mediated gene expression.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
By regulating activities and expression levels of key signaling molecules, estrogens control mechanisms that are responsible for crucial cellular functions. Ligand binding to estrogen receptor (ER) leads to conformational changes that regulate the receptor activity, its interaction with other proteins and DNA. In the cytoplasm, receptor interactions with kinases and scaffolding molecules regulate cell signaling cascades (extranuclear/nongenomic action). In the nucleus, estrogens control a repertoire of coregulators and other auxiliary proteins that are associated with ER, which in turn determines the nature of regulated genes and level of their expression (genomic action). The combination of genomic and nongenomic actions of estrogens ultimately confers the cell-type and tissue-type selectivity. Recent studies have revealed some important new insights into the molecular mechanisms underlying ER action, which may help to explain the functional basis of existing selective ER modulators (SERMs) and provide evidence into how ER might be selectively targeted to achieve specific therapeutic goals. In this review, we will summarize some new molecular details that relate to estrogen signaling. We will also discuss some new strategies that may potentially lead to the development of functionally selective ER modulators that can separate between the beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS as well as the "detrimental," proliferative effects in reproductive tissues and organs.  相似文献   

14.
Estrogen receptors (ERs) belong to the nuclear receptor superfamily, whose members include ER-α66, ER-α36, ER-α46 and ER-β. Each receptor performs specific functions through binding with a specific ligand, such as estrogen. Recently, ER-α36, a novel variant of human estrogen receptor-alpha (ER-α), was identified and cloned. ER-α36 inhibits, in a dominant-negative manner, the transactivation of both the wild-type ER-α (ER-α66) and ER-β. As a predominantly membrane-based ER, ER-α36 mediates nongenomic estrogen signaling and is involved in the resistance of breast cancer to endocrine therapy, i.e., tamoxifen. This review summarizes recent studies on the structure and function of ER-α36 and the relationship of ER-α36 with cancer, with special emphasis on its function in the resistance of breast cancer to endocrine therapy.  相似文献   

15.
PELP1 (proline-, glutamic acid-, and leucine-rich protein-1) (also known as the modulator of nongenomic activity of estrogen receptor) plays a role in genomic functions of the estrogen receptor via histone interactions and in nongenomic functions via its influence on the MAPK-Src pathway. However, recent studies have shown that differential compartmentalization of PELP1 could play a crucial role in modulating the status of nongenomic signaling by using molecular mechanisms that remain poorly understood. Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) is an early endosomal protein that plays a role in regulating the trafficking of growth factor-receptor complexes through early endosomes. By using a yeast two-hybrid screen, we identified HRS as a novel PELP1-binding protein providing evidence of a physiologic interaction between HRS and PELP1. The noted HRS-PELP1 interaction was accompanied by inhibition of the basal coactivator function of PELP1 upon estrogen receptor transactivation. HRS was found to sequester PELP1 in the cytoplasm, leading to the activation of MAPK in a manner that is dependent on the epidermal growth factor receptor but independent of the estrogen receptor, Shc, and Src. In addition, stimulation of MAPK and the subsequent activation of its downstream effector pathway, Elk-1, by HRS or PELP1 were found to depend on the presence of endogenous PELP1 or HRS. Furthermore, HRS was overexpressed and correlated well with the cytoplasmic PELP1, increased MAPK, and EGFR status in breast tumors. These findings highlight a novel role of HRS in up-regulating MAPK, presumably involving interaction with PELP1.  相似文献   

16.
Thyroid hormones (THs) exert a broad range of actions on development, growth, and cell differentiation by both genomic and nongenomic mechanisms. THs regulate lymphocyte function, but the participation of nongenomic actions is still unknown. Here the contribution of both genomic and nongenomic effects on TH-induced division of T cells was studied by using free and noncell permeable THs coupled to agarose (TH-ag). THs-ag led to cell division, but to a lesser extent than free hormones. THs induced nongenomically the rapid translocation of protein kinase C (PKC) ζ isoform to cell membranes, extracellular-signal-regulated kinases (ERK1/2) phosphorylation and nuclear factor-κB (NF-κB) activation. The signaling cascade include sphingomyelinases acting up-stream the activation of PKCζ isoform, while ERK and NF-κB are activated downstream this PKC isoenzyme. Both free and THs-ag increased the protein and mRNA levels of TH nuclear receptor TRα1, while only free hormones incremented the inducible NOS gene and protein levels as well as a calcium independent NOS activity. Both effects were blunted by PKCζ inhibition. These results indicate that THs, by triggering a nongenomic signaling cascade that involves Smases-mediated activation of PKCζ, lead to ERK 1/2 and NF-κB activation and to the genomic increase of TRs and the inducible nitric oxide synthase protein and mRNA levels, improving T lymphocyte proliferation. These finding not only contribute to the understanding of the mechanisms involved in TH modulation of lymphocyte physiology, but would also point out for the first time the interplay between genomic and nongenomic TH actions in T cells.  相似文献   

17.
Neuroplasticity refers to the changes in the molecular and cellular processes of neural circuits that occur in response to environmental experiences. Clinical and experimental studies have increasingly shown that estrogens participate in the neuroplasticity involved in cognition, behavior, and memory. It is generally accepted that estrogens exert their effects through genomic actions that occur over a period of hours to days. However, emerging evidence indicates that estrogens also rapidly influence the neural circuitry through nongenomic actions. In this review, we provide an overview of the genomic and nongenomic actions of estrogens and discuss how these actions may cooperate in synaptic plasticity. We then summarize the role of epigenetic modifications, synaptic protein synthesis, and posttranslational modifications, and the splice variants of estrogen receptors in the complicated network of estrogens. The combination of genomic and nongenomic mechanisms endows estrogens with considerable diversity in modulating neural functions including synaptic plasticity.  相似文献   

18.
Although rapid signaling by estrogen at the plasma membrane is established, it is controversial as to the nature of the receptor protein. Estrogen may bind membrane proteins comparable to classical nuclear estrogen receptors (ERs), but some studies identify nonclassical receptors, such as G protein-coupled receptor (GPR)30. We took several approaches to define membrane-localized estrogen-binding proteins. In endothelial cells (ECs) from ERalpha/ERbeta combined-deleted mice, estradiol (E2) failed to specifically bind, and did not activate cAMP, ERK, or phosphatidyinositol 3-kinase or stimulate DNA synthesis. This is in contrast to wild-type ECs, indicating the lack of any functional estrogen-binding proteins in ERalpha/ERbeta combined-deleted ECs. To directly determine the identity of membrane and nuclear-localized ER, we isolated subcellular receptor pools from MCF7 cells. Putative ER proteins were trypsin digested and subjected to tandem array mass spectrometry. The output analysis identified membrane and nuclear E2-binding proteins as classical human ERalpha. We also determined whether GPR30 plays any role in E2 rapid actions. MCF7 (ER and GPR30 positive) and SKBR-3 (ER negative, GPR30 positive) cells were incubated with E2. Only MCF7 responded with significantly increased signaling. In MCF7, the response to E2 was not different in cells transfected with small interfering RNA to green fluorescent protein or GPR30. In contrast, interfering RNA to ERalpha or ER inhibition prevented rapid signaling and resulting biology in MCF7. In breast cancer and ECs, nuclear and membrane ERs are the same proteins. Furthermore, classical ERs mediate rapid signals induced by E2 in these cells.  相似文献   

19.
During the development of the central nervous system, estrogen influences cellular differentiation and determines the functional connectivity of distinct neural networks. Estrogens generally act through nuclear estrogen receptors (ERs). Recent research has additionally revealed rapid estrogen effects requiring the binding of estrogen to membrane/cytoplasmic ERs and the activation of intracellular signaling systems such as the Src/MAPK cascade. The scaffold protein MNAR/PELP1 appears to be the designated functional mediator of such non-genomic estrogen effects between non-nuclear ERs and Src/MAPKs. In this study, we demonstrate the expression and differential regulation of MNAR mRNA in the developing male and female mouse brain by quantitative polymerase chain reaction. In the midbrain and hypothalamus, a gradual decline in MNAR mRNA levels has been observed prenatally with the highest values at embryonic day 15 and lowest at postnatal day 15. In the cortex, mRNA levels do not fluctuate until postnatal day 7 but decrease thereafter. No differences in MNAR expression between sexes have been detected. Analysis of neuronal and astroglia-enriched cell cultures has revealed the presence of MNAR in both cell types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号