首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle Volume Changes   总被引:2,自引:0,他引:2       下载免费PDF全文
Measurements have been made of the volume changes accompanying single isometric and isotonic twitches of frog sartorius muscle. The volume change consists of a rapid increase, a subsequent decrease, and a return to the initial volume; the order of magnitude of increase and decrease is 10-5 cc/g of muscle. This volume change is length-dependent: the initial increase becomes more pronounced as the initial length of the muscle is decreased, while the volume decrease is greatest at reference length and is diminished for longer and shorter initial lengths. Muscle volume changes are also dependent upon temperature and amount of shortening: the return phase is prolonged as the temperature is lowered; and, in an isotonic twitch, a volume increase accompanying muscle shortening is superimposed upon the volume change described for an isometric twitch. These "shortening volume changes" may correspond to the volume decrease observed in frog muscle under a passive stretch. If the active state is prolonged by the use of a frog Ringer solution in which iodide ions have been substituted for chloride ions, the time course of the volume decrease is likewise prolonged; this suggests a relationship between the volume decrease and the active state of the muscle.  相似文献   

2.
Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of phosphocreatine (PC) splitting cannot account for the total energy (heat + work) liberation (Gilbert et al. 1971. J. Physiol. (Lond.) 218:)63). As this conclusion is important to an understanding of the chemical energetics of contraction, similar experments were performed on unpoisoned, oxygenated Rana pipiens sartorius muscles. The muscles were tetanized (isometrically) at 0 degrees C for 0.6, 1, or 5 s; metabolism was rapidly arrested by freezing the muscles with a specially designed hammer apparatus, and the frozen muscles were chemically analyzed. Comparable myothermal measurments were made on frogs from the same batch. Results of these experiments indicate: (a) The energy liberation parallels the PC and ATP breakdown with a proportionality constant of 10.7 kcal/mol; (b) comparably designed experiments with sartorius muscles of R. temporaria revealed that the ratio of energy liberation to PC splitting was significantly greater than that observed in R. pipiens sartorius muscles; (c) there is no systematic difference between experiments in which metabolism was arrested by the hammer apparatus and others using a conventional immersion technique.  相似文献   

3.
The time course of force generation and the time course of muscle stiffness were measured in rabbit soleus muscles during eccentric contraction to understand the underlying basis for the force loss in these muscles. Muscles were activated for 600 msec every 10 sec for 30 min. Soleus muscles contracting isometrically maintained constant tension throughout the treatment period, while muscles subjected to eccentric contraction rapidly dropped tension generation by 75% within the first few minutes and then an additional 10% by the end of 30 min. This indicated a dramatic loss in force-generating ability throughout the 30 min treatment period. To estimate the relative number of cross-bridges attached during the isometric force generation phase immediately preceding each eccentric contraction, stiffness was measured during a small stretch of a magnitude equal to 1.5% of the fiber length. Initially, muscle stiffness exceeded 1300 g/mm and, as eccentric treatment progressed, stiffness decreased to about 900 g/mm. Thus, while muscle stiffness decreased by only 30% over the 30 min treatment period, isometric force decreased by 85%. In isometrically activated muscles, stiffness remained constant throughout the treatment period. These data indicate that, while soleus muscles decreased their force generating capability significantly, there were a number of cross-bridges still attached that were not generating force. In summary, the loss of force generating capacity in the rabbit soleus muscle appears to be related to a fundamental change in myosin cross-bridge properties without the more dramatic morphological changes observed in other eccentric contraction models. These results are compared and contrasted with the observations made on muscles composed primarily of fast fibers.  相似文献   

4.
Effects of a constant magnetic field (CMF) of 0.65 T on muscle tension over 9 h were studied in the neuromuscular preparation of the bullfrog sartorius muscle. Tension was developed every 30 min by stimulation of the sciatic nerve (nerve stimulation) or of the sartorius muscle itself (muscle stimulation). In sciatic nerve stimulation, tension decreased rapidly for the first 3-4 h at a similar rate in both test (exposed to CMF) and control muscles. However, the rate of decrease became smaller and almost leveled off after 3-4 h in the test muscles, whereas tension continued to decrease monotonically in control muscles. The slope of the decrease for these later periods was significantly different between the test and the control conditions. Accordingly, tension was larger in test than in control muscles. In muscle stimulation, tension decreased monotonically from the start of experiments in control muscles, while tension in test muscles maintained their initial values for almost 3 h. Thereafter they started to decrease with a similar rate to the control. Hence, tension was always larger in test than in control muscles. A similar pattern of temporal change was observed for the rate of rise of the maximum tension for nerve or muscle stimulation. However, a significant difference was detected only in the case of muscle stimulation. The present results showed that a strong CMF of 0.65 T had biological effects on tension development of the bullfrog sartorius muscle by stimulation of the sciatic nerve as well as by stimulation of muscle itself. The presence of a small AC magnetic field component leaves open the possibility of an AC, rather than a CMF effect.  相似文献   

5.
The effect of a rapid change in pHe (pH of bathing solution) on the isometric tetanic tension developed by sartorius muscles of toads acclimated to 5 and 25 degrees C was measured at 5 and 25 degrees C. The pH was altered by changing the carbon dioxide concentration of a bicarbonate buffered physiological solution. Acclimation temperature did not modify the response to a rapid change in pH, but test temperature did. Following a pH decrease from 9.0 to 6.0, tetanic tension decreased at a faster rate at 5 degrees C than at 25 degrees C. A new steady state was reached in 15 min at 5 degrees C but in 40 min at 25 degrees C. Following a pH increase from 6.0 to 8.5, tetanic tension increased at a faster rate at 25 degrees C than at 5 degrees C. A new steady state was reached in 60 min at 5 degrees C but in 10 min at 25 degrees C. We conclude that the rate of carbon dioxide diffusion through the sartorius muscle is only one factor that determines how rapidly tetanic tension changes following the step change in pH, and that muscle resists pH change more effectively at higher temperatures.  相似文献   

6.
This paper describes an organ culture system that maintains frog sartorius muscles in good condition for 5 days. In the absence of serum and insulin, muscles maintained at approximately 93% of resting length atrophied with significant decreases in dry weight, protein content, and contractile force, and in the levels of activity of citrate synthase, lactate dehydrogenase, and creatine kinase. Inclusion of 1.0 mU/ml of insulin in the culture medium prevented the decreases in muscle mass, twitch tension, and citrate synthase activity and minimized the decreases in lactate dehydrogenase, creatine kinase, and tetanic tension. Inclusion of 10% serum, in addition to 1 mU/ml insulin, in the medium did not have clear cut additional benefits. Stretching muscles to 110% of resting length (L0) resulted in marked deterioration with decreases in total protein, enzyme levels, and contractile force. Keeping muscles at approximately 93% L0 was as effective as maintenance at L0 in preventing atrophy and loss of contractile force and enzyme activities. This organ culture procedure, which maintains frog sartorius muscle in good condition without serum for at least 5 days, may provide a useful model for studying the regulatory mechanisms responsible for a variety of adaptations in muscle.  相似文献   

7.
The volume occupied by the extracellular space has been investigated in six types of voluntary muscles: sartorius (frog), semitendinosus (frog), tibialis anticus longus (frog), iliofibularis (frog), rectus abdominis (frog), and diaphragm (rat). With the aid of four types of probe material, three of which are conventionally employed (inulin, sorbitol, sucrose) and one of which is newly introduced (poly-L-glutamate), and a different experimental method, we have demonstrated that the "true" extracellular space of frog sartorius, semitendinosus, tibialis anticus longus, and iliofibularis muscle and of rat diaphragm muscle is equal to, or probably less than, 8-9% (v/w) of the tissue. The frog rectus muscle shows a somewhat higher ceiling value of 14%.  相似文献   

8.
Local movement was recorded in tetanically contracting frog sartorius muscle to estimate the nonuniformity in the distribution of compliance in the muscle preparation and the compliance that resides in the attachments of the preparation to the measuring apparatus. The stimulated muscle was also subjected to rapid length changes, and the local movements and tension responses were recorded. The results indicate that during tension development at resting length the central region of the muscle shortens at the expense of the ends. After stimulation the "shoulder" in the tension, which divided the relaxation into a slow decline and a subsequent, rather exponential decay toward zero, was accompanied by an abrupt increase in local movement. We also examined the temperature sensitivity of the two phases of relaxation. The results are consistent with the view that the decrease in tension during relaxation depends on mechanical conditions. The local movement brought about by the imposed length changes indicates that the peak value of the relative length change of the uniformly acting part was approximately 20% less than the relative length change of the whole preparation. From these observations, corrections were obtained for the compliance data derived from the tension responses. These corrections allow a comparison with data in the literature obtained from single fiber preparations. The implications for the stiffness measured during the tension responses are discussed.  相似文献   

9.
In an isometric tetanus of frog sartorius muscle the total relaxation time increased linearly with change in length from 0.7 to 1.4 times rest length. Maximal rate of relaxation, measured from the time derivative (dp/dt) of tension decay, decreased with both decrease and increase from rest length in correlation with the generated tetanus tension. Stretching the muscle did not significantly affect the times to maximal rate, positive and negative inflexion points but greatly increased the time to total relaxation from the negative inflexion point. Caffeine at 2 mM, acting on muscles at rest length, also slowed the relaxation and decreased the maximal rate of tension decay. However, caffeine increased the times to maximal rate, positive and negative inflexion points without significantly affecting time to total relaxation from the negative inflexion point. These results suggest that caffeine slows an earlier step in relaxation, while stretch slows a later step. It is proposed that muscle relaxation is a two step process: an initial step that is regulated by the rate of Ca2+ uptake by sarcoplasmic reticulum, and a later step that is mostly controlled by the speed of dissociation of remaining cross-bridges.  相似文献   

10.
Frog sartorius muscles are stretched at rest and during maximal tetanic contractions. Parallel compliance decreases when the length increases. The relationship between compliance and length is linear in double-logarithmic scale. The compliance of the active muscle (tetanic contraction) is not related to the length. The series-compliance is calculated from the parallel compliance and the active one. It increases with the length of muscle. These results are discussed on the basis of the sliding-filaments theory.  相似文献   

11.
The effect of increasing the osmotic strength of the extracellular solution on the fifament lattice of living frog sartorius and semitendinosus muscle has been studied using low-angle x-ray diffraction to measure the lattice spacing. As the extracellular osmotic strength is increased, the filament lattice shrinks like an osmometer until a minimal spacing between the thick filaments is reached. This minimal spacing varies from 20 to 31 nm, depending on the sarcomere length. Further increase in the osmotic strength produces little further shrinkage. The osmotic shrinkage curve indicates, for both muscles, an osmotically-inactive volume of approximately 30% of the volume in normal Ringer's solution. Shrinkage appears to be independent of temperature and the type of particle used to increase the osmotic strength (glucose, sucrose, small ions). The rate at which osmotic equilibruim is reached depends on muscle size, being slower for greater muscle diameters. Equilibrium spacings are approached exponentially with time constants ranging from 20 to 60 min. Independent of osmotic equilibrium, the lattice tends to shrink slowly by approximately 3% over the first few hours after dissection, probably because of a leakage of K+ ions from inside the muscle cells. This can be partly prevented by using an extracellular solution which contains a higher concentration of K+ ions or which is hypoosmotic. The volume of the muscle filament lattice (1.155d10(2) . S) is constant over a very wide range of sarcomere lengths, and is equal to approximately 3.6 x 10(6) nm3 for a range of amphibian muscle types.  相似文献   

12.
The intracellular pH of frog sartorius muscles exposed to an extracellular pH 8.0 (25 mM HCO3-, 1% CO2) was 6.9-7.1. Following a fatiguing stimulation period (one tetanic contraction per second for 3 min), the intracellular pH was 6.5-6.7. When similar experiments were repeated with frog sartorius muscles exposed to pH 6.4 (2mM HCO3-, 1% CO2), the intracellular pH was 6.8-6.9 at rest and 6.3-6.4 following fatigue. So, in both experiments the intracellular pH decreased by 0.4-0.5 pH unit during fatigue. When the CO2 concentration of the bathing solution was increased from 1 to 30%, the intracellular pH of resting muscles decreased from 7.0 to 6.2-6.3. Although the effect of CO2 on the intracellular pH was greater than the fatigue effect, the decrease in tetanic force with CO2 was less than 40%, while during fatigue the tetanic force decreased by at least 70%. Therefore in frog sartorius muscle the decrease in tetanic force during fatigue exceeds the decrease that is expected from just a change in intracellular pH.  相似文献   

13.
The masticatory muscles in 132 anesthetized male and female rhesus monkeys ranging in age from juvenile to adult were unilaterally stimulated. Muscle forces and speeds were measured with a bite force transducer positioned at the incisors, premolars, and molars during twitch and tetanic contractions. Lateral cephalographs of all animals were used to estimate the orientation and mechanical advantage of the masticatory muscles. Results showed that maximal occlusal forces increased at a greater rate than body weight during growth. However, maximal occlusal forces increased isometrically relative to mandibular length. Mean forces at the incisors ranged from 70.3 newtons (n) in juveniles up to 139.9 n in adult males. Forces at the molars were 2-2.5 times greater than at the incisors. Time-to-peak tension decreased with increasing body size from 44.1 msec in juveniles to 37.4 msec in adult females to 31.0 msec in adult males. Regression analysis showed that adult males have faster muscles than adult females or juveniles even when corrected for body size. Temporalis and masseter orientation was found to change little throughout growth. The mechanical advantage of the masseter and temporalis muscles for producing occlusal forces on the distal molars improved between juveniles and adults, which is contrary to findings of Oyen et al. (Growth 43:174-187, 1979). Among adults, females had a greater mechanical advantage of the masseter muscles than males.  相似文献   

14.
Equatorial X-ray diffraction patterns were recorded from small bundles of one to three chemically skinned frog sartorius muscle fibres (time resolution 250 microseconds) during rapid stretch and subsequent release. In the relaxed state, the dynamic A-band lattice spacing change as a result of a 2 % step stretch (determined from the positions of the 10 and 11 reflections) resulted in a 21 % increase in lattice volume, while static studies of spacing and sarcomere length indicated than an increase in volume of >/=50 % for the same length change. In rigor, stretch caused a lattice volume decrease which was reversed by a subsequent release. In activated fibres (pCa 4.5) exposed to 10 mM 2,3-butanedione 2-monoxime (BDM), stretch was accompanied by a lattice compression exceeding that of constant volume behaviour, but during tension recovery, compression was partially reversed to leave a net spacing change close to that observed in the relaxed fibre. In the relaxed state, spacing changes were correlated with the amplitude of the length step, while in rigor and BDM states, spacing changes correlated more closely with axial force. This behaviour is explicable in terms of two components of radial force, one due to structural constraints as seen in the relaxed state, and an additional component arising from cross-bridge formation. The ratio of axial to radial force for a single thick filament resulting from a length step was four in rigor and BDM, but close to unity for the relaxed state.  相似文献   

15.
The effects of pH on the kinetics of fatigue and recovery in frog sartorius muscle were studied to establish whether the pH to which muscles are exposed (extracellular pH) has an effect on both the rate of fatigue development and recovery from fatigue. When frog sartorius muscles were stimulated with short tetanic stimuli at rates varying from 0.2 to 2.0 trains/s, a time- and frequency-dependent decrease in force development was observed, but extracellular pH had comparatively little effect. The recovery of tetanic force was dependent on the extracellular pH. This effect was characterized by a rapid recovery in force at pH 8.0 and an inhibition of recovery at pH 6.4 even when force decreased by only 25% during stimulation. Even when muscles were fatigued at pH 8.0 the rate of force recovery was still very small at pH 6.4. A model is proposed in which a step of the contraction cycle changes from a normal to a fatigued state. The rate of this transition is a function of the stimulation frequency and not pH. The reverse transition, from a fatigued to normal state is pH dependent; i.e., it is inhibited by H+. Measurements of resting and action potentials show that extracellular pH influences these parameters in the fatigue state, but there is no evidence that these changes are directly responsible for the pH-dependent step in the reversal of fatigue.  相似文献   

16.
This report describes a comparative X-ray diffraction study of the supramolecular structure of frog sartorius and semitendinosus muscles. For sarcomere lengths of 2.7 microns and below the X-ray diffraction diagrams of each muscle type are very similar; the only differences being that the diffraction diagram for semitendinosus muscles exhibit the presence of a broad diffraction band or a cluster of diffraction orders at a spacing of ca. 230.0 nm and, also, they lack a periodicity of ca. 102.0 nm. For sarcomere lengths greater than 2.7 microns disruption of the sarcomere from sartorius muscle occurs as seen by the loss of sampling in the diffraction diagram. The semitendinosus muscle can be stretched to much longer lengths (in excess of 3.0 microns) before a loss of sampling is detected. The data also shows that in the case of the semitendinosus muscle for long sarcomere lengths transverse bands of mass are able to move without retaining a defined distance to either the Z or the M lines. This is not observed in the case of the sartorius muscle. Thus, at resolutions between ca. 3.6 microns and 7.50 nm significant ultrastructural differences between these two muscles are apparent. The data suggest that the ability of these mass bands to move may be responsible for the differences in the development of passive tension exhibited by these two muscles.  相似文献   

17.
The hypothesis that elevated systolic stress induces myocyte thickening has been difficult to test directly. We tested this hypothesis in working rat right ventricular papillary muscles using a recently developed technique for long-term muscle culture. Muscles were cultured for 36 h either isometrically at different levels of systolic stress or at physiological amounts and rates of shortening. Isometric contraction induced rapid increases in myocyte diameter regardless of the level of systolic stress, whereas control myocyte dimensions were maintained if physiological amounts and rates of systolic shortening were imposed. Myocyte thickening was accompanied by a significant decrease in cell length and number of sarcomeres in series along the long axis of the myocyte, suggesting that thickening may have occurred in part by rearrangement of existing sarcomeres. We conclude that the pattern of systolic shortening and/or diastolic lengthening regulates myocyte shape in working rat right ventricular papillary muscles, whereas systolic stress plays little or no role.  相似文献   

18.
The "catchlike" property is defined as the dramatic force increase in skeletal muscles when a single pulse is added at the onset of a sub-tetanic low-frequency stimulation train. This property has been observed in single motor units, whole animal and human muscles. It is an inherent property of muscle fibres and is not related to an increase in motor unit recruitment. Despite an abundance of observations, its origin remains unclear. The aim of this study was to induce the catchlike property in human adductor pollicis and identify its possible origin. Thumb adduction forces were measured using ulnar nerve electrical stimulation at 10Hz for reference trains (RTs) with one extra pulse 8ms after the first stimulation pulse for the experimental trains (ETs). Tests were performed at two muscle length and three stimulation levels and muscle stiffness and potentiation were quantified for all test conditions. The ETs showed higher forces and greater rates of force increase than the RTs. In addition, force increase was more pronounced at short compared to long muscle length, but no differences were found in force increase for the three stimulation levels. Furthermore, potentiation and stiffness were similar across all experimental conditions. Together, these results suggest that the increase in force associated with the catchlike property is neither caused by an increased proportion of attached cross-bridges nor potentiation of the muscle, but appears to be muscle length dependent and present in both slow and fast motor units.  相似文献   

19.
We tested the hypothesis that economy and efficiency are independent of length in intact cardiac muscle over its normal working range. We measured force, force-time integral, force-length area, and myocardial oxygen consumption in eight isometrically contracting rabbit right ventricular papillary muscles. 2,3-Butanedione monoxime was used to partition nonbasal oxygen consumption into tension-independent and tension-dependent components. Developed force, force-time integral, and force-length area increased by factors of 2.4, 2.7, and 4.8, respectively, as muscle length was increased from 90% to 100% maximal length, whereas tension-dependent oxygen consumption increased only 1.6-fold. Economy (the ratio of force-time integral to tension-dependent oxygen consumption) increased significantly with muscle length, as did contractile efficiency, the ratio of force-length area to tension-dependent oxygen consumption. The average force-length area-nonbasal oxygen consumption intercept was more than the twice tension-independent oxygen consumption. We conclude that economy and efficiency increase with length in rabbit myocardium. This conclusion is consistent with published data in isolated rabbit and dog hearts but at odds with studies in skinned myocardium.  相似文献   

20.
Considerable attention has been directed to the characteristic force-velocity relation discovered by A. V. Hill in the study of muscle kinematics. Models of contractile process were tested on the basis of their compatibility with the Hill equation. However, almost all the isotonic data have been restricted to one length, l0, the maximum length with almost no resting tension; the velocities measured are those initial values when the load begins to move. The force-velocity curve extrapolates to zero velocity for isometric tension, but only for the tension at that one length. Very few efforts have been made to study the profiles of the curves throughout the range of lengths over which shortening takes place. In examining the length region, ll0, for an isotonically contracting muscle, not only is the force-velocity relation valid for the initial reference length, l0, but also for any other length. The analysis in this report indicates that the constants a/P0 and b/l0 remain fixed throughout the length change of afterloaded isotonic shortening in the Rana pipiens sartorius muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号