首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DEK was originally described as a proto-oncogene protein and is now known to be a major component of metazoan chromatin. DEK is able to modify the structure of DNA by introducing supercoils. In order to find interaction partners and functional domains of DEK, we performed yeast two-hybrid screens and mutational analyses. Two-hybrid screening yielded C-terminal fragments of DEK, suggesting that DEK is able to multimerize. We could localize the domain to amino acids 270 to 350 and show that multimerization is dependent on phosphorylation by CK2 kinase in vitro. We also found two DNA binding domains of DEK, one on a fragment including amino acids 87 to 187 and containing the SAF-box DNA binding motif, which is located between amino acids 149 and 187. This region is sufficient to introduce supercoils into DNA. The second DNA binding domain is located between amino acids 270 and 350 and thus overlaps the multimerization domain. We show that the two DNA-interacting domains differ in their binding properties and in their abilities to respond to CK2 phosphorylation.  相似文献   

2.
Multimerization of the Hantaan virus nucleocapsid protein (NP) in Hantaan virus-infected Vero E6 cells was observed in a competitive enzyme-linked immunosorbent assay (ELISA). Recombinant and truncated NPs of Hantaan, Seoul, and Dobrava viruses lacking the N-terminal 49 amino acids were also detected as multimers. Although truncated NPs of Hantaan virus lacking the N-terminal 154 amino acids existed as a monomer, those of Seoul and Dobrava formed multimers. The multimerized truncated NP antigens of Seoul and Dobrava viruses could detect serotype-specific antibodies, whereas the monomeric truncated NP antigen of Hantaan virus lacking the N-terminal 154 amino acids could not, suggesting that a hantavirus serotype-specific epitope on the NP results in multimerization. The NP-NP interaction was also detected by using a yeast two-hybrid assay. Two regions, amino acids 100 to 125 (region 1) and amino acids 404 to 429 (region 2), were essential for the NP-NP interaction in yeast. The NP of Seoul virus in which the tryptophan at amino acid number 119 was replaced by alanine (W119A mutation) did not multimerize in the yeast two-hybrid assay, indicating that tryptophan 119 in region 1 is important for the NP-NP interaction in yeast. However, W119A mutants expressed in mammalian cells were detected as the multimer by using competitive ELISA. Similarly, the truncated NP of Seoul virus expressing amino acids 155 to 429 showed a homologous interaction in a competitive ELISA but not in the yeast two-hybrid assay, indicating that the C-terminal region is important for the multimerization detected by competitive ELISA. Combined, the results indicate that several steps and regions are involved in multimerization of hantavirus NP.  相似文献   

3.
Oxysterol-binding protein (OSBP) is 1 of 12 related proteins implicated in the regulation of vesicle transport and sterol homeostasis. A yeast two-hybrid screen using full-length OSBP as bait was undertaken to identify partner proteins that would provide clues to the function of OSBP. This resulted in the cloning of vesicle-associated membrane protein-associated protein-A (VAP-A), a syntaxin-like protein implicated in endoplasmic reticulum (ER)/Golgi vesicle transport, and phospholipid regulation in mammalian cells and yeast, respectively. By using a combination of yeast two-hybrid, glutathione S-transferase pull-down and immunoprecipitation experiments, the VAP-A-binding region in OSBP was localized to amino acids 351-442. This region did not include the pleckstrin homology (PH) domain but overlapped with the N terminus of the oxysterol binding and OSBP homology domains. C- and N-terminal truncations or deletions of VAP prevented interaction with OSBP but did not affect VAP multimerization. Although the OSBP PH domain was not necessary for VAP-A binding in vitro, interaction with VAP-A was enhanced in cells by mutation of the conserved PH domain tryptophan (OSBP W174A) or deletion of the C-terminal half of the PH domain (OSBP Delta 132-182). OSBP W174A retained oxysterol binding activity, association with phospholipid vesicles via the PH domain, and localized with VAP in unusual ER-associated structures. At 40 degrees C, misfolded ts045-vesicular stomatitis virus G protein fused to green fluorescent protein was co-localized with VAP-A/OSBP W174A structures on the ER but was exported to the Golgi when folded normally at 32 degrees C. A fluorescent ceramide analogue also accumulated in these ER inclusions, and export to the Golgi was partially inhibited as indicated by decreased Golgi staining and a 30% reduction in sphingomyelin synthesis. These studies show that OSBP binding to the ER and Golgi apparatus is regulated by its PH domain and VAP interactions, and the complex is involved at a stage of protein and ceramide transport from the ER.  相似文献   

4.
Human filamins are 280-kDa proteins containing an N-terminal actin-binding domain followed by 24 characteristic repeats. They also interact with a number of other cellular proteins. All of those identified to date, with the exception of actin, bind to the C-terminal third of a filamin. In a yeast two-hybrid search of a human placental library, using as bait repeats 10-18 of filamin B, we isolated a cDNA coding for a novel 374 amino acid protein containing a proline-rich domain near its N terminus and two LIM domains at its C terminus. We term this protein filamin-binding LIM protein-1, FBLP-1. Yeast two-hybrid studies with deletion mutants localized the areas of interaction in FBLP-1 to its N-terminal domain and in filamin B to repeats 10-13. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. We also have identified two FBLP-1 variants. Both contain three C-terminal LIM domains, but one lacks the N-terminal proline-rich domain. Transfection of FBLP-1 into 293A cells promoted stress fiber formation, and both FBLP-1 and filamin B localized to stress fibers in the transfected cells. The association between filamin B and FBLP-1 may play a hitherto unknown role in cytoskeletal function, cell adhesion, and cell motility.  相似文献   

5.
Cajal bodies (CBs) are dynamic subnuclear compartments involved in the biogenesis of ribonucleoproteins. Coilin is a major structural scaffolding protein necessary for CB formation, composition and activity. The predicted secondary structure of Arabidopsis thaliana coilin (Atcoilin) suggests that the protein is composed of three main domains. Analysis of the physical properties of deletion mutants indicates that Atcoilin might consist of an N-terminal globular domain, a central highly disordered domain and a C-terminal domain containing a presumable Tudor-like structure adjacent to a disordered C terminus. Despite the low homology in amino acid sequences, a similar type of domain organization is likely shared by human and animal coilin proteins and coilin-like proteins of various plant species. Atcoilin is able to bind RNA effectively and in a non-specific manner. This activity is provided by three RNA-binding sites: two sets of basic amino acids in the N-terminal domain and one set in the central domain. Interaction with RNA induces the multimerization of the Atcoilin molecule, a consequence of the structural alterations in the N-terminal domain. The interaction with RNA and subsequent multimerization may facilitate coilin’s function as a scaffolding protein. A model of the N-terminal domain is also proposed.  相似文献   

6.
7.
The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This "silencing" was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components.  相似文献   

8.
The E1 helicase of papillomavirus is required, in addition to host cell DNA replication factors, during the initiation and elongation phases of viral episome replication. During initiation, the viral E2 protein promotes the assembly of enzymatically active multimeric E1 complexes at the viral origin of DNA replication. In this study we used the two-hybrid system and chemical cross-linking to demonstrate that human papillomavirus type 11 (HPV11) E1 can self-associate in yeast and form hexamers in vitro in a reaction stimulated by single-stranded DNA. Self-association in yeast was most readily detected using constructs spanning the E1 C-terminal domain (amino acids 353 to 649) and was dependent on a minimal E1-E1 interaction region located between amino acids 353 and 431. The E1 C-terminal domain was also able to oligomerize in vitro but, in contrast to wild-type E1, did so efficiently in the absence of single-stranded DNA. Sequences located between amino acids 191 and 353 were necessary for single-stranded DNA to modulate oligomerization of E1 and were also required, together with the rest of the C terminus, for binding of E1 to the origin. Two regions within the C-terminal domain were identified as important for oligomerization: the ATP-binding domain and region A, which is located within the minimal E1-E1 interaction domain and is one of four regions of E1 that is highly conserved with the large T antigens of simian virus 40 and polyomavirus. Amino acid substitutions of highly conserved residues within the ATP-binding domain and region A were identified that reduced the ability of E1 to oligomerize and bind to the origin in vitro and to support transient DNA replication in vivo. These results support the notion that oligomerization of E1 occurs primarily through the C-terminal domain of the protein and is allosterically regulated by DNA and ATP. The bipartite organization of the E1 C-terminal domain is reminiscent of that found in other hexameric proteins and suggests that these proteins may oligomerize by a similar mechanism.  相似文献   

9.
We previously identified human CAP, a homolog of the yeast adenylyl cyclase—associated protein. Previous studies suggest that the N-terminal and C-terminal domains of CAP have distinct functions. We have explored the interactions of human CAP with various proteins. First, by performing yeast two-hybrid screens, we have identified peptides from several proteins that interact with the C-terminal and/or the N-terminal domains of human CAP. These peptides include regions derived from CAP and BAT3, a protein with unknown function. We have further shown that MBP fusions with these peptides can associate in vitro with the N-terminal or C-terminal domains of CAP fused to GST. Our observations indicate that CAP contains regions in both the N-terminal and C-terminal domains that are capable of interacting with each other or with themselves. Furthermore, we found that myc-epitope-tagged CAP coimmunoprecipitates with HA-epitope-tagged CAP from either yeast or mammalian cell extracts. Similar results demonstrate that human CAP can also interact with human CAP2. We also show that human CAP interacts with actin, both by the yeast two-hybrid test and by coimmunoprecipitation of epitope-tagged CAP from yeast or mammalian cell extracts. This interaction requires the C-terminal domain of CAP, but not the N-terminal domain. Thus CAP appears to be capable of interacting in vivo with other CAP molecules, CAP2, and actin. We also show that actin co-immunoprecipitates with HA-CAP2 from mammalian cell extracts. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Sang Y  Li QH  Rubio V  Zhang YC  Mao J  Deng XW  Yang HQ 《The Plant cell》2005,17(5):1569-1584
Cryptochromes (CRY) are blue light receptors that share sequence similarity with photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA. Transgenic Arabidopsis thaliana seedlings expressing the C-terminal domains of the Arabidopsis CRY fused to beta-glucuronidase (GUS) display a constitutive photomorphogenic (COP) phenotype, indicating that the signaling mechanism of Arabidopsis CRY is mediated through the C-terminal domain. The role of the Arabidopsis CRY N-terminal photolyase-like domain in CRY action remains poorly understood. Here, we report the essential role of the Arabidopsis CRY1 N-terminal domain (CNT1) in the light activation of CRY1 photoreceptor activity. Yeast two-hybrid assay, in vitro binding, in vivo chemical cross-linking, gel filtration, and coimmunoprecipitation studies indicate that CRY1 homodimerizes in a light-independent manner. Mutagenesis and transgenic studies demonstrate that CNT1-mediated dimerization is required for light activation of the C-terminal domain of CRY1 (CCT1). Transgenic data and native gel electrophoresis studies suggest that multimerization of GUS is both responsible and required for mediating a COP phenotype on fusion to CCT1. These results indicate that the properties of the GUS multimer are analogous to those of the light-modified CNT1 dimer. Irradiation with blue light modifies the properties of the CNT1 dimer, resulting in a change in CCT1, activating CCT1, and eventually triggering the CRY1 signaling pathway.  相似文献   

11.
CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme that controls phosphatidylcholine synthesis, is regulated by reversible interactions with membranes containing anionic lipids. Previous work demonstrated that CCT is a homodimer. In this work we show that the structure of the dimer interface is altered upon encountering membranes that activate CCT. Chemical cross-linking reactions were established which captured intradimeric interactions but not random CCT dimer collisions. The efficiency of capturing covalent cross-links with four different reagents was diminished markedly upon presentation of activating anionic lipid vesicles but not zwitterionic vesicles. Experiments were conducted to show that the anionic vesicles did not interfere with the chemistry of the cross-linking reactions and did not sequester available cysteine sites on CCT for reaction with the cysteine-directed cross-linking reagent. Thus, the loss of cross-linking efficiency suggested that contact sites at the dimer interface had increased distance or reduced flexibility upon binding of CCT to membranes. The regions of the enzyme involved in dimerization were mapped using three approaches: 1) limited proteolysis followed by cross-linking of fragments, 2) yeast two-hybrid analysis of interactions between select domains, and 3) disulfide bonding potential of CCTs with individual cysteine to serine substitutions for the seven native cysteines. We found that the N-terminal domain (amino acids 1-72) is an important participant in forming the dimer interface, in addition to the catalytic domain (amino acids 73-236). We mapped the intersubunit disulfide bond to the cystine 37 pair in domain N and showed that this disulfide is sensitive to anionic vesicles, implicating this specific region in the membrane-sensitive dimer interface.  相似文献   

12.
13.
14.
Transient receptor potential (TRP) channels are a family of cation channels involved in diverse cellular functions. They are composed of a transmembrane domain of six putative transmembrane segments flanked by large N- and C-terminal cytoplasmic domains. The melastatin subfamily (TRPM) channels have N-terminal domains of approximately 700 amino acids with four regions of shared homology and C-terminal domains containing the conserved TRP domain followed by a coiled-coil region. Here we investigated the effects of N- and C-terminal deletions on the cold and menthol receptor, TRPM8, expressed heterologously in Sf21 insect cells. Patch-clamp electrophysiology was used to study channel activity and revealed that only deletion of the first 39 amino acids was tolerated by the channel. Further N-terminal truncation or any C-terminal deletions prevented proper TRPM8 function. Confocal microscopy with immunofluorescence revealed that amino acids 40-86 are required for localization to the plasma membrane. Furthermore, analysis of deletion mutant oligomerization shows that the transmembrane domain is sufficient for TPRM8 assembly into tetramers. TRPM8 channels with C-terminal deletions tetramerize and localize properly but are inactive, indicating that although not essential for tetramerization and localization, the C terminus is critical for proper function of the channel sensor and/or gate.  相似文献   

15.
The Escherichia coli dnaQ gene encodes the 3'-->5' exonucleolytic proofreading (epsilon) subunit of DNA polymerase III (Pol III). Genetic analysis of dnaQ mutants has suggested that epsilon might consist of two domains, an N-terminal domain containing the exonuclease and a C-terminal domain essential for binding the polymerase (alpha) subunit. We have created truncated forms of dnaQ resulting in epsilon subunits that contain either the N-terminal or the C-terminal domain. Using the yeast two-hybrid system, we analyzed the interactions of the single-domain epsilon subunits with the alpha and theta subunits of the Pol III core. The DnaQ991 protein, consisting of the N-terminal 186 amino acids, was defective in binding to the alpha subunit while retaining normal binding to the theta subunit. In contrast, the NDelta186 protein, consisting of the C-terminal 57 amino acids, exhibited normal binding to the alpha subunit but was defective in binding to the theta subunit. A strain carrying the dnaQ991 allele exhibited a strong, recessive mutator phenotype, as expected from a defective alpha binding mutant. The data are consistent with the existence of two functional domains in epsilon, with the C-terminal domain responsible for polymerase binding.  相似文献   

16.
Stable maintenance of P1 plasmids in Escherichia coli is mediated by a high affinity nucleoprotein complex called the partition complex, which consists of ParB and the E. coli integration host factor (IHF) bound specifically to the P1 parS site. IHF strongly stimulates ParB binding to parS, and the minimal partition complex contains a single dimer of ParB. To examine the architecture of the partition complex, we have investigated the DNA binding activity of various ParB fragments. Gel mobility shift and DNase I protection assays showed that the first 141 residues of ParB are dispensable for the formation of the minimal, high affinity partition complex. A fragment missing only the last 16 amino acids of ParB bound specifically to parS, but binding was weak and was no longer stimulated by IHF. The ability of IHF to stimulate ParB binding to parS correlated with the ability of ParB to dimerize via its C terminus. Using full and partial parS sites, we show that two regions of ParB, one in the center and the other near the C terminus of the protein, interact with distinct sequences within parS. Based on these data, we have proposed a model of how the ParB dimer binds parS to form the minimal partition complex.  相似文献   

17.
The fusion of soluble partner to the N terminus of aggregation-prone polypeptide has been popularly used to overcome the formation of inclusion bodies in the E. coli cytosol. The chaperone-like functions of the upstream fusion partner in the artificial multidomain proteins could occur in de novo folding of native multidomain proteins. Here, we show that the N-terminal domains of three E. coli multidomain proteins such as lysyl-tRNA synthetase, threonyl-tRNA synthetase, and aconitase are potent solubility enhancers for various C-terminal heterologous proteins. The results suggest that the N-terminal domains could act as solubility enhancers for the folding of their authentic C-terminal domains in vivo. Tandem repeat of N-terminal domain or insertion of aspartic residues at the C terminus of the N-terminal domain also increased the solubility of fusion proteins, suggesting that the solubilizing ability correlates with the size and charge of N-terminal domains. The solubilizing ability of N-terminal domains would contribute to the autonomous folding of multidomain proteins in vivo, and based on these results, we propose a model of how N-terminal domains solubilize their downstream domains.  相似文献   

18.
Active partition of the F plasmid to dividing daughter cells is assured by interactions between proteins SopA and SopB, and a centromere, sopC. A close homologue of the sop operon is present in the linear prophage N15 and, together with sopC-like sequences, it ensures stability of this replicon. We have exploited this sequence similarity to construct hybrid sop operons with the aim of locating specific interaction determinants within the SopA and SopB proteins that are needed for partition function and for autoregulation of sopAB expression. Centromere binding was found to be specified entirely by a central 25 residue region of SopB strongly predicted to form a helix-turn-helix structure. SopB protein also carries a species-specific SopA-interaction determinant within its N-terminal 45 amino acids, and, as shown by Escherichia coli two-hybrid analysis, a dimerization domain within its C-terminal 75 (F) or 97 (N15) residues. Promoter-operator binding specificity was located within an N-terminal 66 residue region of SopA, which is predicted to contain a helix-turn-helix motif. Two other regions of SopA protein, one next to the ATPase Walker A-box, the other C-terminal, specify interaction with SopB. Yeast two-hybrid analysis indicated that these regions contact SopB directly. Evidence for the involvement of the SopA N terminus in autoinhibition of SopA function was obtained, revealing a possible new aspect of the role of SopB in SopA activation.  相似文献   

19.
Using a yeast two-hybrid system with the 70-kDa heat shock cognate protein (hsc70) or its C-terminal 30-kDa domain as baits, we isolated several proteins interacting with hsc70, including Hip/p48 and p60/Hop. Both are known to interact with hsc70. Except for Hip/p48, all of the proteins that we isolated interact with the 30-kDa domain. Moreover, the EEVD motif at the C terminus of the 30-kDa domain appears essential for this interaction. Sequence analysis of these hsc70-interacting proteins reveals that they all contain tetratricopeptide repeats. Using deletion mutants of these proteins, we demonstrated either by two-hybrid or in vitro binding assays that the tetratricopeptide repeat domains in these proteins are necessary and sufficient for mediating the interaction with hsc70.  相似文献   

20.
The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号