首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both P<0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both P<0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential (P<0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.  相似文献   

2.
The expression level of CC-chemokine receptor 5 (CCR5) is enhanced post inflammatory stimulations and might play a crucial role on inflammatory cells infiltration post myocardial ischemia. The purpose of this study was to evaluate the role of CCR5 on myocardial ischemia–reperfusion (I/R) injury in rats. Adult male rats were randomized to sham group, I/R group (I/R, 30 min coronary artery occlusion followed by 2-h reperfusion), ischemic preconditioning (I/R + Pre), CCR5 antibody group [I/R + CCR5Ab (0.2 mg/kg)], and CCR5 agonist group [I/R + CCR5Ago, RNATES (0.1 mg/kg)], n = 12 each group. The serum level of creatine kinase (CK) and tumor necrosis factor α (TNF-α) were measured by ELISA. Myocardial infarction size and myeloperoxidase (MPO) activity were determined. Myocardial protein expression of CCR5 and intercellular adhesion molecule-1 (ICAM-1) were evaluated by Western blotting and immunohistochemistry staining, respectively. Myocardial nuclear factor-kappa B (NF-κB) activity was assayed by electrophoretic mobility shift assay. Myocardial CCR5 protein expression was significantly reduced in I/R + Pre group (P < 0.05 vs. I/R) and further reduced in I/R + CCR5Ab group (P < 0.05 vs. I/R + Pre). LVSP and ±dP/dt max were significantly lower while serum CK and TNF-α as well as myocardial MPO activity, ICAM-1 expression, and NF-κB activity were significantly higher in I/R group than in sham group (all P < 0.05), which were significantly reversed by I/R + Pre (all P < 0.05 vs. I/R) and I/R + CCR5Ab (all P < 0.05 vs. I/R + Pre) while aggravated by I/R + CCR5Ago (all P < 0.05 vs. I/R). Our results suggest that blocking CCR5 attenuates while enhancing CCR5 aggravates myocardial I/R injury through modulating inflammatory responses in rat heart.  相似文献   

3.
CSN5/JAB1 is a critical subunit of the COP9 signalosome (CSN) and is overexpressed in many human cancers, but little is known about the role of CSN5 in colorectal cancer (CRC). To explore the functional role of CSN5 in colorectal tumorigenesis, we applied siRNA technology to silence CSN5 in HeLa, SW480, HCT116, HT29, and CaCo2 cells. CSN5 knock-down led to reduced β-catenin and phospho-bcatenin levels and this was paralleled by reduced CRC cell proliferation and reduced apoptosis rates, whereas the short-term β-catenin protein stability was enhanced by CSN5 knock-down in SW480 cells. Together, these data implicate the CSN in the pathogenesis of CRC via regulation of the Wnt/β-catenin pathway  相似文献   

4.
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.  相似文献   

5.
6.
The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Iα (PKA-RIα) and the PKA-RIα- and TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein–protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role.  相似文献   

7.
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
  相似文献   

8.
MERIT40 is a novel associate of the BRCA1-complex, thus play an essential role in DNA damage repair mechanism. It is the least implicit protein and its structural and functional aspects of regulating the stability of BRCA1–MERIT40 complex remain equivocal. Analysis of protein–protein interactions between BRCA1 and its cellular binding partners like ABRAXAS, RAP80 and MERIT40 would help to understand the role of protein complex integrity in DNA repair mechanism. The recombinant proteins were purified and their structural aspects were elucidated by spectroscopic methods. Interaction analysis was carried out to determine binding partners of MERIT40. MERIT40 showed interaction with bridging molecule, called ABRAXAS, thus generate a scaffold among various members which further stabilizes the entire complex. It acts as an adapter molecule by interacting with BRCA1-BRCT in non-phosphorylation dependent manner. The feature enlighten on structural and interaction profile of BRCA1-complex member to elucidate their role in complex stability and DNA repair process.  相似文献   

9.
Renal ischemia–reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia–reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia–reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.  相似文献   

10.
Journal of Physiology and Biochemistry - Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal...  相似文献   

11.
Abstract

High-mobility group box-1 protein (HMGB1) is a highly conserved non-histone DNA-binding protein present in the nuclei and cytoplasm of nearly all cell types. The results from recent research provide evidence that HMGB1 is secreted into the extracellular milieu and acts as a pro-inflammatory cytokine and exhibits angiogenic effects to fire the immunological response against the pathological effects. Recently, a great deal of evidence has indicated the critical importance of HMGB1 in mediating vascular barriers dysfunction by modulating the expression of adhesion molecules, such as intercellular adhesion molecule-1, vascular cell adhesion protein 1 and E-selectin on the surface of endothelial cells. Such process promotes the adhesion and migration of leukocytes across the endothelium, leading to breakdown of vascular barriers (blood–brain barrier and blood–retinal barrier) via modulating the expression, content, phosphorylation, and distribution of tight junction proteins. Therefore, here we give an abridged review to understand the mechanistic link between HMGB1 and vascular barriers dysfunction, including interaction with cell-surface receptors and intracellular signaling pathways.  相似文献   

12.
Inflammatory response plays an important role in myocardial ischaemia–reperfusion (IR) injury. Up-regulation of vascular cell adhesion molecule-1 (VCAM) contributes to this. We examined the feasibility of using intravenously administered VCAM–MPIO (microparticle iron oxide) to characterize VCAM expression patterns in myocardial IR injury. Myocardial ischemia was simulated by 30 min of transient ligation of the left coronary vessel in rats. Purified, monoclonal, rat-specific, mouse VCAM antibody coupled to MPIO was administered through the tail vein at 3 h post reperfusion and the rats were sacrificed 1 h later. High resolution 3D ex vivo MRI images were acquired at 9.4 Tesla. Extensive foci of signal voids were observed on T2*-weighted gradient-echo sequences, which corresponded to focal deposits of MPIOs observed in histological sections. The spatial density of the signal voids (expressed as a percentage of pixels below a threshold value) was increased in the peri-infarct zone compared with non-infarct zone (32.5 ± 4 % vs. 13.9 ± 5 %; n = 6; p < 0.05) and was substantially greater than the signal loss due to non-specific binding seen in rats administered IgG control MPIO (2.0 ± 1 %; n = 6; p < 0.05). The VCAM-specific MPIO signal was also seen in myocardium and pericardium in segments remote from the IR injury, but not in rats undergoing a sham operation. In conclusion, molecular imaging in a model of myocardial IR injury is possible using high field MRI and VCAM–MPIOs and may provide novel insights beyond those achieved by standard histological and molecular analysis.  相似文献   

13.
14.
Oxidative stress plays a critical role in mediating tissue injury and neuron death during ischemia–reperfusion injury (IRI). The Keap1–Nrf2 defense pathway serves as a master regulator of endogenous antioxidant defense, and Nrf2 has been attracting attention as a target for the treatment of IRI. In this study, we evaluated Nrf2 expression in IRI using OKD (Keap1-dependent oxidative stress detector) mice and investigated the neuroprotective ability of an Nrf2 activator. We demonstrated temporal changes in Nrf2 expression in the same mice with luciferase assays and an Nrf2 activity time course using Western blotting. We also visualized Nrf2 expression in the ischemic penumbra and investigated Nrf2 expression in mice and humans using immunohistochemistry. Endogenous Nrf2 upregulation was not detected early in IRI, but expression peaked 24 h after ischemia. Nrf2 expression was mainly detected in the penumbra, and it was found in neurons and astrocytes in both mice and humans. Intravenous administration of the Nrf2 activator bardoxolone methyl (BARD) resulted in earlier upregulation of Nrf2 and heme oxygenase-1. Furthermore, BARD decreased infarction volume and improved neurological symptoms after IRI. These findings indicate that earlier Nrf2 activation protects neurons, possibly via effects on astrocytes.  相似文献   

15.
Molecular Biology Reports - Renal ischemia–reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI). Although Akt is involved in renal IRI, it is unclear as to which...  相似文献   

16.
Oxidative stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS)-2 have been shown in the pathogenesis of liver ischemia–reperfusion (IR) injury. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression therefore this study determined the role of selective N-SMase inhibition on nitrative and oxidative stress markers following liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Nitrative and oxidative stress markers were determined by evaluating NOS2 expression, protein nitration, nitrite/nitrate levels, 4-hydroxynonenal (HNE) formation, protein carbonyl levels and xanthine oxidase/xanthine dehydrogenase (XO/XDH) activity. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reaction monitoring method using ultra-fast liquid chromatography coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared to controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. NOS2 expression, nitrite/nitrate levels and protein nitration were significantly greater in IR injury and decreased with N-SMase inhibition. Treatment with a selective N-SMase inhibitor significantly decreased HNE formation, protein carbonyl levels and the hepatic conversion of XO. Data confirm the role of nitrative and oxidative injury in IR and highlight the protective effect of selective N-SMase inhibition. Future studies evaluating agents blocking N-SMase activity can facilitate the development of treatment strategies to alleviate oxidative injury in liver I/R injury.  相似文献   

17.
Volatile anesthetic ischemic postconditioning reduces infarct size following ischemia/reperfusion. Whether phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase 3 beta (GSK3β) is causal for cardioprotection by postconditioning is controversial. We therefore investigated the impact of PKB/Akt and GSK3β in isolated perfused rat hearts subjected to 40 min of ischemia followed by 1 h of reperfusion. 2.0% sevoflurane (1.0 minimum alveolar concentration) was administered at the onset of reperfusion in 15 min as postconditioning. Western blot analysis was used to determine phosphorylation of PKB/Akt and its downstream target GSK3β after 1 h of reperfusion. Mitochondrial and cytosolic content of cytochrome C checked by western blot served as a marker for mitochondrial permeability transition pore opening. Sevoflurane postconditioning significantly improved functional cardiac recovery and decreased infarct size in isolated rat hearts. Compared with unprotected hearts, sevoflurane postconditioning-induced phosphorylation of PKB/Akt and GSK3β were significantly increased. Increase of cytochrome C in mitochondria and decrease of it in cytosol is significant when compared with unprotected ones which have reversal effects on cytochrome C. The current study presents evidence that sevoflurane-induced cardioprotection at the onset of reperfusion are partly through activation of PKB/Akt and GSK3β.  相似文献   

18.
Binding sites specific for inositol 1,4,5-trisphosphate (InsP3) have been demonstrated in sarcoplasmic reticulum vesicles isolated from heart muscle. Scatchard analysis of a binding isotherm indicated a high as well as a low affinity binding site [1]. In this study a comparison was made between InsP3 binding to crude microsomal membranes prepared from rat heart atria and ventricles respectively. Results obtained showed a four-fold higher incidence of binding to atrial membranes. Furthermore, the receptor populations of the atria and ventricles behaved differently during conditions causing fluctuations in tissue InsP3 levels, viz. ischaemia, reperfusion and 1-adrenergic stimulation. Reperfusion, as well as phenylephrine stimulation, caused an increase in InsP3 levels associated with down-regulation of the ventricular InsP3 receptor population while binding to atrial binding sites was elevated. In the ventricular population this down-regulation was the result of a reduction in Bmax alone with no changes in the Kd values of the high- or the low-affinity binding sites. The reason(s) for the differential response of the atrial and ventricular InsP3 receptor populations to changes in InsP3 levels, remains to be established.  相似文献   

19.
A series of PTH hybrids containing a diamine [NH2(CH2) n NH2; n = 4, 5, 6] in the C-terminal position was synthesized based on the H-Aib-Val-Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har-NH2 (Har = homoarginine) template. The compounds were pharmacologically characterized at PTH1R receptors for agonist activity.  相似文献   

20.
Mammalian pinealocytes contain several synaptic membrane proteins which probably play a role in the targeting and exocytosis of secretory vesicles, in particular of synaptic-like microvesicles (SLMVs). The latter are considered as the endocrine equivalent of neuronal synaptic vesicles. By means of immunocytochemical techniques and immunoblot analyses, we now show that two further key components of the molecular apparatus regulating neurotransmitter release are present in the gerbil pineal gland, i.e., munc-18–1 and cysteine string protein (csp). In addition to varicosities of nerve fibres, munc-18–1 and csp could be localized to pinealocytes where both proteins were markedly enriched in process swellings. When using antibodies against csp for an immunogold electron-microscopic study of pinealocytes, gold particles consistently decorated profiles of pleomorphic SLMVs. Interestingly, we found that also the cytosolic protein munc-18, which is partially recruited to the plasmalemma in neurons, was associated to a significant extent with SLMVs of pinealocytes and synaptic vesicles of neurons, respectively. This localization implies that munc-18 at least partially exerts its regulatory functions while being bound to secretory vesicle membranes. Our results indicate that in endocrine cells such as pinealocytes the synaptic proteins munc-18–1 and csp play essential roles during the life cycle of SLMVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号