首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydrins are ubiquitous plant proteins, synthesized in late stages of plant embryo development and following any environmental stress involving dehydration. With the aim to study the evolution of such a stress-responsive gene within Helianthus and to test the possibility of using this gene for phylogenetic studies, fragments of the same dehydrin gene were isolated by PCR and sequenced in 16 wild Helianthus species or subspecies. All isolated sequences included the typical dehydrin domains (Y, S and K), a portion of 3'-UTR and an intron, inserted in the same position within the S domain-encoding region. The number of nucleotide substitutions (both synonymous and nonsynonymous) was calculated keeping separate the different gene regions, and differences occur even among coding domains, indicating that evolutionary constraints act differently on each region. The occurrence of indels and/or insertions was also observed. At the deduced protein level, the calculation of isoelectric point, molecular weight and the percentage of alpha-helix showed a diversification of biochemical properties of this protein between annual and perennial Helianthus species. Phylogenetic trees were built by the maximum-likelihood, maximum-parsimony, and neighbor-joining methods. In all cases the same topology was observed; perennial and annual species form a supported clade, and H. annuus was separated from the other annuals and from perennials. These data support the use of this stress-responsive gene to study the phylogeny of Helianthus.  相似文献   

2.
Crop germplasm collections are valuable resources for ongoing plant breeding efforts. To fully utilize such collections, however, researchers need detailed information about the amount and distribution of genetic diversity present within collections. Here, we report the results of a population genetic analysis of the primary gene pool of sunflower (Helianthus annuus L.) based on a broad sampling of 433 cultivated accessions from North America and Europe, as well as a range-wide collection of 24 wild sunflower populations. Gene diversity across the cultivars was 0.47, as compared with 0.70 in the wilds, indicating that cultivated sunflower harbors roughly two-thirds of the total genetic diversity present in wild sunflower. Population structure analyses revealed that wild sunflower can be subdivided into four genetically distinct population clusters throughout its North American range, whereas the cultivated sunflower gene pool could be split into two main clusters separating restorer lines from the balance of the gene pool. Use of a maximum likelihood method to estimate the contribution of the wild gene pool to the cultivated sunflower germplasm revealed that the bulk of the cultivar diversity is derived from two wild sunflower population genetic clusters that are primarily composed of individuals from the east-central United States, the same general region in which sunflower domestication is believed to have occurred. We also identified a nested subset of accessions that capture as much of the allelic diversity present within the sampled cultivated sunflower germplasm collection as possible. At the high end, a core set of 288 captured nearly 90% of the alleles present in the full set of 433, whereas a core set of just 12 accessions was sufficient to capture nearly 50% of the total allelic diversity present within this sample of cultivated sunflower.  相似文献   

3.
Jerusalem artichoke (Helianthus tuberosus) is a wild relative of the cultivated sunflower (H. annuus); it is an old tuber crop that has recently received renewed interest. We used RAPD markers to characterize 147 Jerusalem artichoke accessions from nine countries. Thirty RAPD primers were screened; 13 of them detected 357 reproducible RAPD bands, of which 337 were polymorphic. Various diversity analyses revealed several different patterns of RAPD variation. More than 93% of the RAPD variation was found within accessions of a country. Weak genetic differentiation was observed between wild and cultivated accessions. Six groups were detected in this germplasm set. Four ancestral groups were found for the Canadian germplasm. The most genetically distinct accessions were identified. These findings provide useful diversity information for understanding the Jerusalem artichoke gene pool, for conserving Jerusalem artichoke germplasm, and for choosing germplasm for genetic improvement.  相似文献   

4.
Patterns of nucleotide diversity in wild and cultivated sunflower   总被引:11,自引:0,他引:11       下载免费PDF全文
Liu A  Burke JM 《Genetics》2006,173(1):321-330
  相似文献   

5.
Thirty-four fluorescently labeled microsatellite markers were used to assess genetic diversity in a set of 30 Coffea accessions from the CENICAFE germplasm bank in Colombia. The plant material included one sample per accession of seven East African accessions representing five diploid species and 23 wild and cultivated tetraploid accessions of Coffea arabica from Africa, Indonesia, and South America. More allelic diversity was detected among the five diploid species than among the 23 tetraploid genotypes. The diploid species averaged 3.6 alleles/locus and had an average polymorphism information content (PIC) value of 0.6, whereas the wild tetraploids averaged 2.5 alleles/locus and had an average PIC value of 0.3 and the cultivated tetraploids (C. arabica cultivars) averaged 1.9 alleles/locus and had an average PIC value of 0.22. Fifty-five percent of the alleles found in the wild tetraploids were not shared with cultivated C. arabica genotypes, supporting the idea that the wild tetraploid ancestors from Ethiopia could be used productively as a source of novel genetic variation to expand the gene pool of elite C. arabica germplasm.  相似文献   

6.
Determining the identity and distribution of molecular changes leading to the evolution of modern crop species provides major insights into the timing and nature of historical forces involved in rapid phenotypic evolution. In this study, we employed an integrated candidate gene strategy to identify loci involved in the evolution of flowering time during early domestication and modern improvement of the sunflower (Helianthus annuus). Sunflower homologs of many genes with known functions in flowering time were isolated and cataloged. Then, colocalization with previously mapped quantitative trait loci (QTLs), expression, or protein sequence differences between wild and domesticated sunflower, and molecular evolutionary signatures of selective sweeps were applied as step-wise criteria for narrowing down an original pool of 30 candidates. This process led to the discovery that five paralogs in the flowering locus T/terminal flower 1 gene family experienced selective sweeps during the evolution of cultivated sunflower and may be the causal loci underlying flowering time QTLs. Our findings suggest that gene duplication fosters evolutionary innovation and that natural variation in both coding and regulatory sequences of these paralogs responded to a complex history of artificial selection on flowering time during the evolution of cultivated sunflower.  相似文献   

7.
8.
Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgressionthe former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines (θ = 0.0094) than wild populations (θ = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome (~3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.  相似文献   

9.
 The annual sunflower (Helianthus annuus L.) is a morphologically and genetically variable species composed of wild, weedy, and domesticated forms that are used for ornament, oilseed, and edible seeds. In this study, we evaluated genetic variation in 146 germplasm accessions of wild and domesticated sunflowers using allozyme analysis. Results from this survey showed that wild sunflower exhibits geographically structured genetic variation, as samples from the Great Plains region of the central United States were genetically divergent from accessions from California and the southwestern United States. Sunflower populations from the Great Plains harbored greater allelic diversity than did wild sunflower from the western United States. Comparison of genetic variability in wild and domesticated sunflower by principal coordinate analysis showed these groups to be genetically divergent, in large part due to differences in the frequency of common alleles. Neighbor-Joining analyses of domesticated H. annuus, wild H. annuus and two closely related wild species (H. argophyllus T. & G. and H. petiolaris Nutt.) showed that domesticated sunflowers form a genetically coherent group and that wild sunflowers from the Great Plains may include the most likely progenitor of domesticated sunflowers. Received: 2 December 1996/Accepted: 4 April 1997  相似文献   

10.
The contemporary oilseed sunflower (Helianthus annuus L.) gene pool is a product of multiple breeding and domestication bottlenecks. Despite substantial phenotypic diversity, modest differences in molecular genetic diversity have been uncovered in anciently and recently domesticated sunflowers. The paucity of molecular marker polymorphisms in early analyses led to the hypothesis of a single domestication origin. Phylogenetic analyses were performed on 47 domesticated and wild germplasm accessions using 122 microsatellite loci distributed throughout the sunflower genome. Extraordinary allelic diversity was found in the Native American land races and wild populations, and progressively less allelic diversity was found in germplasm produced by successive cycles of domestication and breeding. Of 1,341 microsatellite alleles, 489 were unique to land races, exotic domesticates and wild populations, whereas only 15 were unique to elite inbred lines. The number of taxon-specific alleles was 35-fold greater among wild populations (26.27) than elite inbred lines (0.75). Microsatellite genotyping uncovered the possibility of multiple domestication origins. Land races domesticated by Native Americans of the southwestern US (Hopi and Havasupai) formed a clade independent of land races domesticated by Native Americans of the Great Plains and eastern US (Arikara and Seneca). Predictably, domestication and breeding have ratcheted genetic diversity down in sunflower. The contemporary oilseed sunflower gene pool, while not imperiled, could profit from an infusion of novel alleles from the reservoir of latent genetic diversity present in wild populations and Native American land races.  相似文献   

11.
Araújo  A.P.  Teixeira  M.G.  de Almeida  D.L. 《Plant and Soil》1998,203(2):173-182
Genetic variation in plant growth under limited phosphorus (P) supply is necessary to obtain more productive cultivars on low P-available soils. Two pot experiments were conducted to evaluate the variability of some traits associated with efficiency of P absorption and utilization in wild and cultivated genotypes of common bean (Phaseolus vulgaris L.) under biological N2 fixation. At two P levels (20 and 80 mg P kg-1 soil, P1 and P2, respectively), 20 wild and 6 cultivated genotypes were grown in Experiment 1, and 4 wild and 27 cultivated genotypes were grown in Experiment 2. Plants were harvested at flowering, but in Experiment 1 wild accessions that did not flower were harvested at the beginning of leaf senescence. In Experiment 1, part of the genotypic variability of wild accessions was attributed to a less homogeneous ontogenetic stage at harvest, whereas in Experiment 2 some variation in biomass production was due to distinct phenologies of cultivated genotypes. Wild lines did not seem more tolerant to low P conditions, but the genotypic variation observed suggests these materials as a source of genetic diversity. Part of the variation in the root area and root efficiency ratio (total P content:root area) was compensatory, resulting in narrow genotypic differences in the total P content. The total P content and root efficiency ratio presented a wider amplitude of variation at P2 than at P1, and P uptake was more influenced by P supply than root production. Since the genotype × P level interaction was not significant for shoot biomass and shoot P concentration in Experiment 2, P utilization efficiency may be a useful selection criterion for cultivars between limited and adequate P supply. Within the sample of genetic diversity evaluated herein, there was large genotypic variability for traits related to P efficiency among wild and cultivated genotypes of common bean.  相似文献   

12.
13.
Amplified fragment length polymorphisms (AFLPs) represent one of the most powerful polymerase chain reaction (PCR)-based markers which enables one to discriminate single plants by DNA analysis. To date this technique has only been applied in cultivated sunflower to detect genetic diversity among oilseed inbred lines. In this article we report the use of AFLP markers to investigate the level of diversity within and between populations of Helianthus argophyllus collected in the Maputo area, Mozambique, both for taxonomic and breeding purposes. Three primer combinations gave the best results with 92 polymorphic fragments and were able to discriminate these wild endemic populations from H. annuus and from one of its interspecific hybrids. Most of the variation (71%) observed was within population, and the dendrogram based on shared fragments did not divide the H. argophyllus genotypes into distinct groups resembling different populations. Moreover the hybrid genotypes formed distinguishable subgroups with the cultivated sunflower genotype, confirming the suitability of this technique for taxonomic and phylogenetic studies. From a breeding point of view, although the 12 populations of H. argophyllus represent a new valuable genetic resource, only two of them possessed most of the variation observed, suggesting that they can be the most promising material for crossing with cultivated sunflower.  相似文献   

14.
The identification of genes underlying the phenotypic transitions that took place during crop evolution, as well as the genomic extent of resultant selective sweeps, is of great interest to both evolutionary biologists and applied plant scientists. In this study, we report the results of a molecular evolutionary analysis of 11 genes that underlie fatty acid biosynthesis and metabolism in wild and cultivated sunflower (Helianthus annuus). Seven of these 11 genes showed evidence of selection at the nucleotide level, with 1 (FAD7) having experienced selection prior to domestication, 2 (FAD2-3 and FAD3) having experienced selection during domestication, and 4 (FAB1, FAD2-1, FAD6, and FATB) having experienced selection during the subsequent period of improvement. Sequencing of a subset of these genes from an extended panel of sunflower cultivars revealed little additional variation, and an analysis of the genomic region surrounding one of these genes (FAD2-1) revealed the occurrence of an extensive selective sweep affecting a region spanning at least ca. 100 kb. Given that previous population genetic analyses have revealed a relatively rapid decay of linkage disequilibrium in sunflower, this finding indicates the occurrence of strong selection and a rapid sweep.  相似文献   

15.
Wild sunflower Helianthus annuus originates from North America and has naturalised in Argentina where it is considered invasive. The present study attempts to assess the genetic diversity using two different molecular marker systems to study the wild genetic patterns and to provide data applicable to conservation and breeding uses. Ten natural populations sampled throughout the wild range and six inbred lines were studied using inter‐simple sequence repeat (ISSR) and simple sequence repeats (SSR) markers. A total of 64 ISSR bands and 29 SSR alleles were produced from 106 wild and cultivated plants. We found 9 ISSR private bands and 21 SSR private alleles in wild accessions, but no private bands/alleles were found in cultivated sunflowers. Molecular variability in wild populations was approximately 60% higher than in inbred lines. Local wild sunflowers kept considerable diversity levels in comparison with populations in the centre of origin (approximately 70%) and therefore they might possess a potential for adaptive evolutionary change. Analysis of molecular variance (AMOVA) indicated population structure with nearly 20% of genetic variability attributable to between‐population differentiation. Principal coordinate analyses (PCO) grouped wild populations from different geographic locations, and a Mantel test showed low congruence between genetic distance (GD) and geographic distances (GGD); hence, molecular data could not rule out multiple wild introduction events. Low correlations were found between ISSR and SSR GD at individual and population levels; thus, divergent evolutionary groups were not evident in local wild sunflowers. Several genetic diversity criteria were utilised to assign conservation value and certain wild populations emerged as interesting sites for more extensive sampling.  相似文献   

16.
Downy mildew (Plasmopara halstedii (Farl.) Berlese et de Toni) is a serious foliar pathogen of cultivated sunflower (Helianthus annuus L.). Genetic resistance is conditioned by several linked downy mildew resistance gene specificities in the HaRGC1 cluster of TIR-NBS-LRR resistance gene candidates (RGCs) on linkage group 8. The complexity and diversity of the HaRGC1 cluster was assessed by multilocus intron fragment length polymorphism (IFLP) genotyping using a single pair of primers flanking a hypervariable intron located between the TIR and NBS domains. Two to 23 bands were amplified per germplasm accession. The size of the included intron ranged from 89 to 858 nucleotides. Forty-eight unique markers were distinguished among 24 elite inbred lines, six partially isogenic inbred lines, nine open-pollinated populations, four Native American land races, and 20 wild H. annuus populations. Nine haplotypes (based on 24 RGCs) were identified among elite inbred lines and were correlated with known downy mildew resistance specificities. Sixteen out of 39 RGCs identified in wild H. annuus populations were not observed in elite germplasm. Five partially isogenic downy mildew resistant lines developed from wild H. annuus and H. praecox donors carried eight RGCs not found in other elite inbred lines. Twenty-four HaRGC1 loci were mapped to a 2-4 cM segment of linkage group 8. The multilocus IFLP marker and duplicated, hypervariable microsatellite markers tightly linked to the HaRGC1 cluster are powerful tools for distinguishing downy mildew resistance gene specificities and identifying and introgressing new downy mildew resistance gene specificities from wild sunflowers.  相似文献   

17.
We have used nuclear and chloroplast molecular markers to genotype cultivated and wild accessions of Vitis vinifera L. from Tunisia and assess their genetic relationships. Fifty-five distinct genotypes were identified among 80 cultivated accessions, including 18 genotypic groups containing between 2 and 5 accessions per group. They could represent a total of 60 distinct cultivars owing to berry colour variation found within identical genotype groups. Most of the 55 genotypes represent unique table grape genotypes except for one of them that was found identical to the genotype of table grape cultivar Rosseti. Hybridization among cultivars as well as self pollinations seems to have played an important role in their origin since several groups of closely related cultivars were observed. Furthermore, a parentage analysis showed a high probability for a parent hybrid relationship within two groups of three cultivars. No strong genetic similarities were found between cultivated and wild samples indicating that the cultivated accessions do not derive from local Vitis vinifera L. populations but could have been introduced from other regions in historic times.  相似文献   

18.
Determining the genetic structure of isolated or fragmented species is of critical importance when planning a suitable conservation strategy. In this study, we use nuclear and chloroplast SSRs (simple sequence repeats) to investigate the population genetics of an extremely rare sunflower, Helianthus verticillatus Small, which is known from only three locations in North America. We investigated levels of genetic diversity and population structure compared to a more common congener, Helianthus angustifolius L., using both nuclear and chloroplast SSRs. We also investigated its proposed hybrid origin from Helianthus grosseserratus Martens and H. angustifolius. Twenty-two nuclear SSRs originating from the cultivated sunflower (Helianthus annuus L.) expressed sequence tag (EST) database, and known to be transferable to H. verticillatus and its putative parental taxa, were used in this study thereby allowing for statistical control of locus-specific effects in population genetic analyses. Despite its rarity, H. verticillatus possessed significantly higher levels of genetic diversity than H. angustifolius at nuclear loci and equivalent levels of chloroplast diversity. Significant levels of population subdivision were observed in H. verticillatus but of a magnitude comparable to that of H. angustifolius. Inspection of multilocus genotypes also revealed that clonal spread is highly localized. Finally, we conclude that H. verticillatus is not of hybrid origin as it does not exhibit a mixture of parental alleles at nuclear loci, and it does not share a chloroplast DNA haplotype with either of its putative parents.  相似文献   

19.
This study provides the first analysis of the level and patterns of nucleotide polymorphism of the NCED1 gene in grapevine (Vitis vinifera L.). A total of 123 sequences of the gene were analyzed to give a sample of 50 wild accessions and 73 cultivars. A high single nucleotide polymorphism and haplotype diversity was revealed in the cultivars studied, especially Tunisian germplasms which present an important and diverse reservoir of genetic diversity for grape breeding and conservation. The haplotype distribution highlights two origins of the cultivars studied: one may be related to primary grapevine gene pool domestication while the second seems to be more recent. Thus, besides domestication, gene introgression has also played a role in shaping the current varietal landscape of grape cultivars. Higher nucleotide and haplotype polymorphism was recorded for cultivars. This was accompanied by a higher recombination rate in cultivated grapevines for this gene, a recent selective sweep in wild samples and a balancing selection in cultivars. The conservation of genetic diversity of the endangered wild germplasm is important to ensure that the wild population can be used in future breeding programs of the domesticated cultivars. The high number of alleles discovered can be used as a valuable source for association studies between allele frequencies and phenotypic variations in this gene. In addition to natural selection, molecular evidence shows that genetic variation in this locus appears to be shaped by a combination of mutation and recombination events.  相似文献   

20.
Development of microsatellite markers for sunflower (Helianthus annuus L.) was performed to estimate their frequency, nature (structure), levels of polymorphism, usefulness for genotype identification, and calculation of genetic relationships between inbred lines representing the species diversity. Isolation was performed from a small-insert genomic library followed by hybridization screening using oligonucleotide probes containing different nucleotide arrays. In this work, 503 unique microsatellite clones were sequenced and 271 PCR primer sequences bordering the microsatellite repeat were designed. For polymorphism assessment, 16 H. annuus germplasm accessions were checked and 170 of the primers tested were shown to be polymorphic for the selected lines. The polymorphic microsatellites produced an average of 3.5 alleles/locus and an average polymorphism information content (PIC) of 0.55. The most frequently found motifs within polymorphic simple-sequence repeats (SSRs) were: (GA)n, (GT)n, (AT)n, followed by trinucleotides (ATT)n, (TGG)n, and (ATC)n, and the tetranucleotide (CATA)n. Most of the 170 SSRs obtained showed important differences in the 16 reference inbred lines used for their characterization. In this work, 20 of the most informative SSRs destined to sunflower genotyping and legal fingerprinting purposes are fully described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号