首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
We used a series of adamantane derivatives to probe the structure of the phencyclidine locus in either the resting or desensitized state of the nicotinic acetylcholine receptor (AChR). Competitive radioligand binding and photolabeling experiments using well-characterized noncompetitive antagonists such as the phencyclidine analogue [piperidyl-3,4-(3)H(N)]-N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([(3)H]TCP), [(3)H]ethidium, [(3)H]tetracaine, [(14)C]amobarbital, and 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) were performed. Thermodynamic and structure-function relationship analyses yielded the following results. (1) There is a good structure-function relationship for adamantane amino derivatives inhibiting [(3)H]TCP or [(3)H]tetracaine binding to the resting AChR. (2) Since the same derivatives inhibit neither [(14)C]amobarbital binding nor [(125)I]TID photoincorporation, we conclude that these positively charged molecules preferably bind to the TCP locus, perhaps interacting with alphaGlu(262) residues at position M2-20. (3) The opposite is true for the neutral molecule adamantane, which prefers the TID (or barbiturate) locus instead of the TCP site. (4) The TID site is smaller and more hydrophobic (it accommodates neutral molecules with a maximal volume of 333 +/- 45 A(3)) than the TCP locus, which has room for positively charged molecules with volumes as large as 461 A(3) (e.g., crystal violet). This supports the concept that the resting ion channel is tapering from the extracellular mouth to the middle portion. (5) Finally, although both the hydrophobic environment and the size of the TCP site are practically the same in both states, there is a more obvious cutoff in the desensitized state than in the resting state, suggesting that the desensitization process constrains the TCP locus. A plausible location of neutral and charged adamantane derivatives is shown in a model of the resting ion channel.  相似文献   

2.
3-Trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) has been shown to be a potent noncompetitive antagonist (NCA) of the nicotinic acetylcholine receptor (AChR). Amino acids that contribute to the binding site for [(125)I]TID in the ion channel have been identified in both the resting and desensitized state of the AChR (White, B.H., and Cohen, J.B. (1992) J. Biol. Chem. 267, 15770-15783). To characterize further the structure of the NCA-binding site in the resting state channel, we have employed structural analogs of TID. The TID analogs were assessed by the following: 1) their ability to inhibit [(125)I]TID photoincorporation into the resting state channel; 2) the pattern, agonist sensitivity, and NCA inhibition of [(125)I]TID analog photoincorporation into AChR subunits. The addition of a primary alcohol group to TID has no demonstrable effect on the interaction of the compound with the resting state channel. However, conversion of the alcohol function to acetate, isobutyl acetate (TIDBIBA), or to trimethyl acetate leads to rightward shifts in the concentration-response curves for inhibition of [(125)I]TID photoincorporation into the AChR channel and a progressive reduction in the agonist sensitivity of [(125)I]TID analog photoincorporation into AChR subunits. Inhibition of [(125)I]TID analog photoincorporation by NCAs (e.g. tetracaine) as well as identification of the sites of [(125)I]TIDBIBA photoincorporation in the deltaM2 segment indicate a common binding locus for each TID analog. We conclude that relatively small additions to TID progressively reduce its ability to interact with the NCA site in the resting state channel. A model of the NCA site and resting state channel is presented.  相似文献   

3.
All four subunits of the acetylcholine receptor (AChR) are labeled by the lipid-soluble photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) with different stoichiometries and levels of saturable modification sites, dependent on the conformational state of the AChR. This probe is specific for hydrophobic targets such as the membrane-spanning regions of intrinsic proteins. In the resting state, the gamma subunit is labeled 4.5 times greater and the beta and delta subunits 1.65-1.69 greater than the alpha subunit. Carbamylcholine-induced desensitization of the AChR lowers the level and alters the stoichiometry of [125I]TID incorporation into each subunit. This effect is shown to be specific in two ways. First, it is eliminated by prior equilibration with excess alpha-bungarotoxin, which does not change the [125I]TID-labeling pattern of the AChR from that of the resting state. Second, bacteriorhodopsin is labeled by [125I]TID to the same extent both in the presence and absence of carbamylcholine. The noncompetitive blocker phencyclidine does not alter [125I]TID labeling of the AChR relative to the resting state. The 43-kDa protein, which is believed to cross-link the AChR to the cytoskeleton at the synapse, is not modified by [125I]TID, in agreement with earlier conclusions that the 43-kDa protein is not an intrinsic membrane protein.  相似文献   

4.
We have shown previously that the lipophilic photoreagent 3-(trifluoromethyl)3-m-([125I]iodophenyl)-diazirine ([125I]TID) photolabels all four subunits of the Torpedo nicotinic acetylcholine receptor (AChR) and that greater than 70% of this photoincorporation is inhibited by cholinergic agonists and some noncompetitive antagonists, including histrionicotoxin (HTX), but not phencyclidine (PCP; White, B.H., and Cohen, J.B. (1988) Biochemistry 27, 8741-8751). We have now examined the effects of nonradioactive TID on (a) AChR photoincorporation of [125I]TID, (b) AChR-mediated ion transport, and (c) AChR binding of several cholinergic ligands. We find that TID inhibits [125I]TID photoincorporation into the AChR to the same extent as carbamylcholine. The saturable component of [125I]TID photolabeling is half-maximal at 4 microM [125I]TID with 0.5 mol specifically incorporated per mol of AChR after 30 min photolysis with 60 microM [125I]TID. Repeated labeling of membranes at a fixed [125I]TID concentration gave results consistent with a maximal incorporation of one [125I]TID molecule per AChR. Nonradioactive TID also noncompetitively inhibits agonist-stimulated 22Na+ efflux from Torpedo vesicles with an IC50 of 1 microM. Furthermore, TID inhibits allosterically the binding of [3H]HTX, decreasing its affinity for the AChR 5-fold both in the presence and absence of agonist. In contrast, TID has little effect on [3H]PCP binding in the absence of agonist but completely inhibits it in the presence of agonist. TID enhances the cooperativity of [3H]nicotine binding. [125I]TID is thus a photoaffinity label for a novel noncompetitive antagonist binding site on the AChR that is linked allosterically to the binding sites of both agonists and other noncompetitive antagonists. The [125I]TID site is presumably located within the central pore of the AChR.  相似文献   

5.
Hamouda AK  Chiara DC  Blanton MP  Cohen JB 《Biochemistry》2008,47(48):12787-12794
The Torpedo nicotinic acetylcholine receptor (nAChR) is the only member of the Cys-loop superfamily of ligand-gated ion channels (LGICs) that is available in high abundance in a native membrane preparation. To study the structure of the other LGICs using biochemical and biophysical techniques, detergent solubilization, purification, and lipid reconstitution are usually required. To assess the effects of purification on receptor structure, we used the hydrophobic photoreactive probe 3-trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) to compare the state-dependent photolabeling of the Torpedo nAChR before and after purification and reincorporation into lipid. For the purified nAChR, the agonist-sensitive photolabeling within the M2 ion channel domain of positions M2-6, M2-9, and M2-13, the agonist-enhanced labeling of deltaThr274 (deltaM2-18) within the delta subunit helix bundle, and the labeling at the lipid-protein interface (alphaMu4) were the same as for the nAChR in native membranes. However, addition of agonist did not enhance [(125)I]TID photolabeling of deltaIle288 within the deltaM2-M3 loop. These results indicate that after purification and reconstitution of the Torpedo nAChR, the difference in structure between the resting and desensitized states within the M2 ion channel domain was preserved, but not the agonist-dependent change of structure of the deltaM2-M3 loop. To further characterize the pharmacology of [(125)I]TID binding sites in the nAChR in the desensitized state, we examined the effect of phencyclidine (PCP) on [(125)I]TID photolabeling. PCP inhibited [(125)I]TID labeling of amino acids at the cytoplasmic end of the ion channel (M2-2 and M2-6) while potentiating labeling at M2-9 and M2-13 and allosterically modulating the labeling of amino acids within the delta subunit helix bundle.  相似文献   

6.
Bupropion, a clinically used antidepressant and smoking-cessation drug, acts as a noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). To identify its binding site(s) in nAChRs, we developed a photoreactive bupropion analogue, (±)-2-(N-tert-butylamino)-3'-[(125)I]-iodo-4'-azidopropiophenone (SADU-3-72). Based on inhibition of [(125)I]SADU-3-72 binding, SADU-3-72 binds with high affinity (IC(50) = 0.8 μM) to the Torpedo nAChR in the resting (closed channel) state and in the agonist-induced desensitized state, and bupropion binds to that site with 3-fold higher affinity in the desensitized (IC(50) = 1.2 μM) than in the resting state. Photolabeling of Torpedo nAChRs with [(125)I]SADU-3-72 followed by limited in-gel digestion of nAChR subunits with endoproteinase Glu-C established the presence of [(125)I]SADU-3-72 photoincorporation within nAChR subunit fragments containing M1-M2-M3 helices (αV8-20K, βV8-22/23K, and γV8-24K) or M1-M2 helices (δV8-14). Photolabeling within βV8-22/23K, γV8-24K, and δV8-14 was reduced in the desensitized state and inhibited by ion channel blockers selective for the resting (tetracaine) or desensitized (thienycyclohexylpiperidine (TCP)) state, and this pharmacologically specific photolabeling was localized to the M2-9 leucine ring (δLeu(265), βLeu(257)) within the ion channel. In contrast, photolabeling within the αV8-20K was enhanced in the desensitized state and not inhibited by TCP but was inhibited by bupropion. This agonist-enhanced photolabeling was localized to αTyr(213) in αM1. These results establish the presence of two distinct bupropion binding sites within the Torpedo nAChR transmembrane domain: a high affinity site at the middle (M2-9) of the ion channel and a second site near the extracellular end of αM1 within a previously described halothane (general anesthetic) binding pocket.  相似文献   

7.
To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, but agonist inhibits photoincorporation into all subunits by greater than 75% (White, B. H., Howard, S., Cohen, S. G., and Cohen, J. B. (1991) J. Biol. Chem. 266, 21595-21607). [125I]TID-labeled sites on the beta- and delta-subunits were identified by amino-terminal sequencing of both cyanogen bromide (CNBr) and tryptic fragments purified by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by reversed-phase high-performance liquid chromatography. In the absence of agonist, [125I]TID specifically labels homologous aliphatic residues (beta L-257, delta L-265, beta V-261, and delta V-269) in the M2 region of both subunits. In the presence of agonist, labeling of these residues is reduced approximately 90%, and the distribution of labeled residues is broadened to include a homologous set of serine residues at the amino terminus of M2. In the beta-subunit residues beta S-250, beta S-254, beta L-257, and beta V-261 are all labeled in the presence of carbamylcholine. This pattern of labeling supports an alpha-helical model for M2 with the labeled face forming the ion channel lumen. The observed redistribution of label in the resting and desensitized states provides the first direct evidence for an agonist-dependent rearrangement of the M2 helices. The efficient labeling of the resting state channel in a region capable of structural change also suggests a plausible model for AChR gating in which the aliphatic residues labeled by [125I]TID form a permeability barrier to the passage of ions. We also report increased labeling of the M1 region of the delta-subunit in the presence of agonist.  相似文献   

8.
Fatty acids as well as phencyclidine (PCP) inhibit the ion channel activity of the nicotinic acetylcholine receptor (AChR) by a noncompetitive mechanism. However, the exact localization of the fatty acid binding sites is unknown and, thus, the noncompetitive inhibitory mechanism for these endogenous modulators remains to be elucidated. In an attempt to determine the location of the fatty acid binding sites, we study the mutually exclusive action between 5-doxylstearate (5-SASL), a derivative of the endogenous noncompetitive antagonist (NCA) stearic acid, and other exogenous NCAs. For this purpose, both equilibrium and competitive binding assays using fluorescent and radiolabeled ligands were performed on desensitized AChRs. More specifically, we determined: (i) the effect of 5-SASL on the binding of the exogenous NCA [(3)H]PCP; (ii) the effect of 5-SASL on the binding of either quinacrine or ethidium, two fluorescent NCAs from exogenous origin; and (iii) the PCP-induced displacement of quinacrine and ethidium from their respective high-affinity binding sites. Our first target (i) is carried out by measuring the [(3)H]PCP binding in the absence or in the presence of increasing concentrations of 5-SASL. We found that 5-SASL displaces PCP from its low-affinity binding sites. The low-affinity PCP binding sites were pharmacologically characterized by an apparent dissociation constant (K(d)) of 6.1 +/- 5.0 microM and a stoichiometry of 3.7 +/- 1.5 sites per AChR. The fact that 5-SASL increased the apparent K(d) without changing the number of sites per AChR is indicative of a mutually exclusive action. From these results, an apparent inhibition constant (K(i)) of 75 +/- 31 microM for 5-SASL was calculated. In addition, 5-SASL affected neither the apparent K(d) (0.46 +/- 0.37 microM) nor the stoichiometry (1.07 +/- 0.57 sites per AChR) of the high-affinity PCP binding site. The second objective (ii) is achieved by titrating either quinacrine or ethidium into AChR native membranes in the absence or in the presence of increasing concentrations of 5-SASL. These experiments showed that 5-SASL efficiently increased the apparent K(d) of quinacrine without perturbing the interaction of ethidium with its high-affinity locus. Considering that (a) 5-SASL effectively quenched the AChR-bound quinacrine fluorescence (H. R. Arias, Biochim. Biophys. Acta 1347, 9-22, 1997) and (b) fluorescence-quenching is a short-range process, it is possible to suggest that 5-SASL displaces quinacrine from its high-affinity binding site by a steric mechanism. In this regard, a K(i) of 38 +/- 5 microM for 5-SASL was calculated. Concerning the last objective (iii), AChR-bound quinacrine or ethidium was back titrated with PCP. Two PCP K(i) values were obtained by fitting the displacement plots by nonlinear regression with two components. The lowest K(i) values obtained for either quinacrine (0.86 +/- 0.37 microM) or ethidium (0. 29 +/- 0.23 microM) displacement from their respective high-affinity binding sites coincide with the previously determined high-affinity [(3)H]PCP K(d). In addition, the highest K(i) values obtained for either NCA displacement are in the same concentration range as the observed low-affinity [(3)H]PCP K(d). Taking into account all experimental data, we reached the following conclusions: (i) fatty acid molecules, or at least 5-SASL, sterically interact with both the PCP low-affinity and the quinacrine high-affinity binding sites; (ii) the low-affinity PCP binding sites, as well as the high-affinity quinacrine locus, are located at the nonannular lipid domain of the AChR; and, finally, (iii) fatty acid molecules are not accessible to the lumen of the ion channel, indicating an allosteric mode of action for fatty acids to inhibit ion flux. Thus, the 5-SASL, the quinacrine high-affinity, and the PCP low-affinity binding sites are all located at overlapping nonannular loci on the muscle-type AChR.  相似文献   

9.
The hydrophobic, photoreactive probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to characterize the effects of lipids and detergents on acetylcholine receptor (AChR) conformation. Affinity purified AChR reconstituted into dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidic acid (DOPA), and cholesterol showed the same pattern of [125I]TID-labeling and demonstrated the same reduction in labeling of all four subunits upon desensitization by the agonist carbamylcholine, as partially purified AChR in native lipids. On the basis of the patterns of [125I]TID incorporation, reconstitution into DOPC/DOPA also appeared to stabilize the resting (functional) conformation of the AChR, while reconstitution in DOPC/cholesterol or DOPC alone largely desensitized the AChR. The effects of lipids on the functional state of the AChR was determined independently by measuring the ability of AChR reconstituted into different lipid combinations to undergo the change in affinity for agonist diagnostic of desensitization. The dramatic reduction in the apparent levels of [125I]TID associated with the subunits of the AChR observed upon agonist-induced desensitization was shown not to be due to a change in affinity for tightly bound lipid. Solubilization of affinity purified AChR reconstituted into DOPC/DOPA/cholesterol by the non-ionic detergents octyl glucoside, Triton X-100, and Tween 20 (final detergent concentration = 1%) was shown to produce the same pattern of [125I]TID-labeling as desensitization by agonist, while solubilization in 1% sodium cholate appeared to stabilize a conformation of the AChR more similar to the resting state.  相似文献   

10.
The pharmacological properties of (±)-2-(N-tert-butylamino)-3′-iodo-4′-azidopropiophenone [(±)-SADU-3-72], a photoreactive analog of bupropion (BP), were characterized at different muscle nicotinic acetylcholine receptors (AChRs) by functional and structural approaches. Ca2+ influx results indicate that (±)-SADU-3-72 is 17- and 6-fold more potent than BP in inhibiting human (h) embryonic (hα1β1γδ) and adult (hα1β1εδ) muscle AChRs, respectively. (±)-SADU-3-72 binds with high affinity to the [3H]TCP site within the resting or desensitized Torpedo AChR ion channel, whereas BP has higher affinity for desensitized AChRs. Molecular docking results indicate that both SADU-3-72 enantiomers interact with the valine (position 13′) and serine (position 6′) rings. However, an additional domain, between the outer (position 20′) and valine rings, is observed in Torpedo AChR ion channels. Our results indicate that the azido group of (±)-SADU-3-72 may enhance its interaction with polar groups and the formation of hydrogen bonds at AChRs, thus supporting the observed higher potency and affinity of (±)-SADU-3-72 compared to BP. Collectively our results are consistent with a model where BP/SADU-3-72 and TCP bind to overlapping sites within the lumen of muscle AChR ion channels. Based on these results, we believe that (±)-SADU-3-72 is a promising photoprobe for mapping the BP binding site, especially within the resting AChR ion channel.  相似文献   

11.
The lipophilic photoactivatable probe 3-(trifluoromethyl)-3-(m-iodophenyl) diazirine (TID) is a noncompetitive, resting-state inhibitor of the nicotinic acetylcholine receptor (nAChR) that requires tens of milliseconds of preincubation to inhibit agonist-induced cation efflux. At equilibrium, [(125)I]TID photoincorporates into both the ion channel and the lipid-protein interface of the Torpedo nAChR. To determine which of these regions is responsible for resting-state inhibition, we characterized the interactions between [(125)I]TID and nAChR-rich membranes milliseconds after mixing, by use of time-resolved photolabeling. Photolabeling was performed after preincubation times of 2 ms or 600 s (equilibrium), and the efficiencies of incorporation at specific residues were determined by amino-terminal sequence analysis of nAChR-subunit proteolytic fragments isolated by SDS-PAGE and/or reversed-phase HPLC. Equilibration of TID with lipid was complete within a millisecond as determined by both stopped-flow fluorescence quenching of diphenylhexatriene in lipid bilayers and photoincorporation into nAChR-rich membrane phospholipids. Equilibration with the lipid-protein interface (alphaM4) was slightly slower, reaching approximately 50% that at equilibrium after 2 ms preincubation. In contrast, equilibration with the channel region (alpha 2 and deltaM2) was much slower, reaching only 10% that at equilibrium after 2 ms preincubation. Within the ion channel, the ratio of [(125)I]TID incorporation between M2 residues 9', 13', and 16' was independent of preincubation time. We conclude that TID's access to the ion channel is more restricted than to the lipid-protein interface and that TID bound within the ion channel is responsible for flux inhibition upon activation of the nAChR.  相似文献   

12.
We investigated the molecular mechanisms and the binding site location for the fluorophor crystal violet (CrV), a noncompetitive antagonist of the nicotinic acetylcholine receptor (AChR). To this end, radiolabeled competition binding, fluorescence spectroscopy, Schild-type analysis, patch-clamp recordings, and molecular dynamics approaches were used. The results indicate that (i) CrV interacts with the desensitized Torpedo AChR with higher affinity than with the resting state at several temperatures (5-37 degrees C); (ii) CrV-induced inhibition of the phencyclidine (PCP) analogue [(3)H]thienylcyclohexylpiperidine binding to the desensitized or resting AChR is mediated by a steric mechanism; (iii) tetracaine inhibits CrV binding to the resting AChR, probably by a steric mechanism; (iv) barbiturates modulate CrV binding to the resting AChR by an allosteric mechanism; (v) CrV itself induces AChR desensitization; (vi) CrV decreases the peak of macroscopic currents by acting on the resting AChR but without affecting the desensitization rate from the open state; and (vii) two tertiary amino groups from CrV may bind to the alpha1-Glu(262) residues (located at position 20') in the resting state. We conclude that the CrV binding site overlaps the PCP locus in the resting and desensitized state. The noncompetitive action of CrV may be explained by an allosteric mechanism in which the binding of CrV to the extracellular mouth of the resting receptor leads to an inhibition of channel opening. Binding of CrV probably increases desensitization of the resting channel and stabilizes the desensitized state.  相似文献   

13.
B H White  J B Cohen 《Biochemistry》1988,27(24):8741-8751
The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the gamma-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist alpha-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effects on [125I]TID labeling of the AChR. The regions of the AChR alpha-subunit that incorporate [125I]TID were mapped by Staphylococcus aureus V8 protease digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the alpha-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology.  相似文献   

14.
The pharmacological properties of (±)-2-(N-tert-butylamino)-3′-iodo-4′-azidopropiophenone [(±)-SADU-3-72], a photoreactive analog of bupropion (BP), were characterized at different muscle nicotinic acetylcholine receptors (AChRs) by functional and structural approaches. Ca2+ influx results indicate that (±)-SADU-3-72 is 17- and 6-fold more potent than BP in inhibiting human (h) embryonic (hα1β1γδ) and adult (hα1β1εδ) muscle AChRs, respectively. (±)-SADU-3-72 binds with high affinity to the [3H]TCP site within the resting or desensitized Torpedo AChR ion channel, whereas BP has higher affinity for desensitized AChRs. Molecular docking results indicate that both SADU-3-72 enantiomers interact with the valine (position 13′) and serine (position 6′) rings. However, an additional domain, between the outer (position 20′) and valine rings, is observed in Torpedo AChR ion channels. Our results indicate that the azido group of (±)-SADU-3-72 may enhance its interaction with polar groups and the formation of hydrogen bonds at AChRs, thus supporting the observed higher potency and affinity of (±)-SADU-3-72 compared to BP. Collectively our results are consistent with a model where BP/SADU-3-72 and TCP bind to overlapping sites within the lumen of muscle AChR ion channels. Based on these results, we believe that (±)-SADU-3-72 is a promising photoprobe for mapping the BP binding site, especially within the resting AChR ion channel.  相似文献   

15.
The binding properties of the 125I-labeled phencyclidine derivative N-[1-(3-[125I]iodophenyl)cyclohexyl]piperidine (3-[125I]iodo-PCP), a new ligand of the N-methyl-D-aspartate (NMDA)-gated ionic channel, were investigated. Association and dissociation kinetic curves of 3-[125I]iodo-PCP with rat brain homogenates were well described by two components. About 32% of the binding was of fast association and fast dissociation, and the remaining binding was of slow association and slow dissociation. Saturation curves of 3-[125I]iodo-PCP also were well described using two binding sites: one of a high affinity (KDH = 15.8 +/- 2.3 nM) and the other of a low affinity (KDL = 250 +/- 40 nM). 3-Iodo-PCP inhibited the binding of 3-[125I]iodo-PCP with inhibition curves that were well fitted by a two-site model. The binding constants (KiH, BmaxH; KiL, BmaxL) so obtained were close to those obtained in saturation experiments. Ligands of NMDA-gated ionic channels also inhibited the binding of 3-[125I]iodo-PCP with two constants, KiH and KiL. There was a very good correlation (r = 0.987) between the affinities of these ligands to bind to NMDA-gated ionic channels and their potencies to inhibit the binding of 3-[125I]iodo-PCP with a high affinity. Moreover, the regional distribution of the high-affinity binding of 3-[125I]-iodo-PCP paralleled that of tritiated N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). In contrast to that of [3H] TCP, the binding of 3-[125I]iodo-PCP to well-washed rat brain membranes was fast and insensitive to glutamate and glycine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Etomidate, one of the most potent general anesthetics used clinically, acts at micromolar concentrations as an anesthetic and positive allosteric modulator of gamma-aminobutyric acid responses, whereas it inhibits muscle-type nicotinic acetylcholine receptors (nAChRs) at concentrations above 10 microm. We report here that TDBzl-etomidate, a photoreactive etomidate analog, acts as a positive allosteric nAChR modulator rather than an inhibitor, and we identify its binding sites by photoaffinity labeling. TDBzl-etomidate (>10 microm) increased the submaximal response to acetylcholine (10 microm) with a 2.5-fold increase at 60 microm. At higher concentrations, it inhibited the binding of the noncompetitive antagonists [(3)H]tetracaine and [(3)H]phencyclidine to Torpedo nAChR-rich membranes (IC(50) values of 0. 8 mm). nAChR-rich membranes were photolabeled with [(3)H]TDBzl-etomidate, and labeled amino acids were identified by Edman degradation. For nAChRs photolabeled in the absence of agonist (resting state), there was tetracaine-inhibitable photolabeling of amino acids in the ion channel at positions M2-9 (deltaLeu-265) and M2-13 (alphaVal-255 and deltaVal-269), whereas labeling of alphaM2-10 (alphaSer-252) was not inhibited by tetracaine but was enhanced 10-fold by proadifen or phencyclidine. In addition, there was labeling in gammaM3 (gammaMet-299), a residue that contributes to the same pocket in the nAChR structure as alphaM2-10. The pharmacological specificity of labeling of residues, together with their locations in the nAChR structure, indicate that TDBzl-etomidate binds at two distinct sites: one within the lumen of the ion channel (labeling of M2-9 and -13), an inhibitory site, and another at the interface between the alpha and gamma subunits (labeling of alphaM2-10 and gammaMet-299) likely to be a site for positive allosteric modulation.  相似文献   

17.
Blanton MP  McCardy EA 《Biochemistry》2000,39(44):13534-13544
To identify regions of the Torpedo Na,K-ATPase alpha-subunit that interact with membrane lipid and to characterize conformationally dependent structural changes in the transmembrane domain, we have proteolytically mapped the sites of photoincorporation of the hydrophobic compounds 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) and the phosphatidylcholine analogue [(125)I]TIDPC/16. The principal sites of [(125)I]TIDPC/16 labeling were identified by amino-terminal sequence analysis of proteolytic fragments of the Na,K-ATPase alpha-subunit and are localized to hydrophobic segments M1, M3, M9, and M10. These membrane-spanning segments have the greatest levels of exposure to the lipid bilayer and constitute the bulk of the lipid-protein interface of the Na,K-ATPase alpha-subunit. The extent of [(125)I]TID and [(125)I]TIDPC/16 photoincorporation into these transmembrane segments was the same in the E(1) and E(2) conformations, indicating that lipid-exposed segments located at the periphery of the transmembrane complex do not undergo large-scale movements during the cation transport cycle. In contrast, for [(125)I]TID but not for [(125)I]TIDPC/16, there was enhanced photoincorporation in the E(2) conformation, and this component of labeling mapped to transmembrane segments M5 and M6. Conformationally sensitive [(125)I]TID photoincorporation into the M5 and M6 segments does not reflect a change in the levels of exposure of these segments to the lipid bilayer as evidenced by the lack of [(125)I]TIDPC/16 labeling of these two segments in either conformation. These results suggest that [(125)I]TID promises to be a useful tool for structural characterization of the cation translocation pathway and for conformationally dependent changes in the pathway. A model of the spatial organization of the transmembrane segments of the Na,K-ATPase alpha- and beta-subunits is presented.  相似文献   

18.
Acetylcholine receptor (AChR) purified from human skeletal muscle affinity-alkylated with bromoacetyl[methyl-3H]choline bromide ([3H]BAC) in mildly reducing conditions to yield a specifically radiolabeled polypeptide, Mr 44,000, the alpha-subunit. The binding of [125I]alpha-bungarotoxin to AChR was completely inhibited by affinity-alkylation, indicating that the human AChR's binding site for alpha-bungarotoxin is closely associated with the alpha-subunit's acetylcholine binding site. Structures in the vicinity of the alpha-bungarotoxin binding sites of AChRs from human muscle and Torpedo electric organ were compared by varying the conditions of alkylation. Under optimal conditions of reduction and alkylation, both human and Torpedo AChR incorporated BAC in equivalence to the number of alpha-bungarotoxin binding sites. However, with limited conditions of reduction but sufficient BAC to alkylate 100% of the alpha-bungarotoxin binding sites of human AChR, only 71% of the Torpedo AChR's binding sites were alkylated. In optimal conditions of reduction but with the minimal concentration of BAC that permitted 100% alkylation of the human AChR's alpha-bungarotoxin sites, only 74% of the Torpedo AChR's binding sites were alkylated. These data suggest that the neurotransmitter binding region of human muscle AChR is structurally dissimilar from that of Torpedo electric organ, having a higher binding affinity for BAC and an adjacent disulfide bond that is more readily accessible to reducing agents.  相似文献   

19.
Purified Torpedo nobiliana electric organ acetylcholine receptor (AChR) was reconstituted into membranes containing natural phospholipids supplemented with cholesterol (25% w/w). The reconstituted system facilitates the study of the effects of drugs on the regulation of the AChR channel complex under both resting and carbachol (carb)-stimulated conditions. Neostigmine (Neo) was the only carbamate to induce activation of [3-H]-phencyclidine ([3-H]-PCP) binding to the channel sites, acting as a weak agonist. The activation of [3-H]-PCP binding is dependent upon the nature of the reconstituted systems, with carb/Neo activation ratios of 8, 3, and 1 for the intact purified AChR vesicles fraction (PVF), the PVF reconstituted in phospholipid/cholesterol (CRPVF), and the PVF reconstituted in phospholipid (RPVF), respectively. The carbamates Neo, physostigmine (Physo), and pyridostigmine (Pyrido) inhibited carb-activated [3-H]-PCP binding with Ki values of 10, 20, and 1,600 μM, respectively. The inhibition was mixed competitivenoncompetitive in nature. The characteristic response of CRPVF to carb-stimulated [22-Na] influx was inhibited by the three carbamates, with IC-50 values of 6,50, and 1,000 μM for Neo, Physo, and Pyrido, respectively. The quaternary ammonium organophosphate ecothiophate (Eco) inhibited carb-stimulated [22-Na] influx with potency similar to that of Neo. Preincubation of AChR preparation with the carbamates and ecothiophate caused a reduction in the binding of [125-I]-α- bungarotoxin ([125-I]-α-BGT) with the following decreasing order of potency: Neo < Physo < Eco < Pyrido. Calcium has a direct modulatory role on the time-course inhibition of [125-I]-α-BGT binding by these drugs. While we observed a high potency of Neo and Physo in inhibiting [125-I]-α-BGT binding, it was undetectable for the carbamate insecticide 2-methyl-2-(methylthio)propionaldehyde-O-(methylcarbamoyl)oxime (aldicarb). These data suggest that the potent anticholinesterase carbamate agents interact differently with the AChR and its ionic channel. Their interactions with the nicotinic AChR channel system can be described as (a) weakly agonist, (b) directly acting on the open conformation of the channel, and (c) blocking the AChR-binding sites.  相似文献   

20.
(2-[(125)I]iodohistidyl(1))Neurokinin A ([(125)I]NKA), which labels "septide-sensitive" but not classic NK(1) binding sites in peripheral tissues, was used to determine whether septide-sensitive binding sites are also present in the rat brain. Binding studies were performed in the presence of SR 48968 (NK(2) antagonist) and senktide (NK(3) agonist) because [(125)I]NKA also labels peripheral NK(2) binding sites and, as shown in this study, central NK(3) binding sites. [(125)I]NKA was found to label not only septide-sensitive binding sites but also a new subtype of NK(1) binding site distinct from classic NK(1) binding sites. Both subtypes of [(125)I]NKA binding sites were sensitive to tachykinin NK(1) antagonists and agonists but also to the endogenous tachykinins NKA, neuropeptide K (NPK), and neuropeptide gamma (NPgamma). However, compounds of the septide family such as substance P(6-11) [SP(6-11)] and propionyl-[Met(O(2))(11)]SP(7-11) and some NK(1) antagonists, GR 82334, RP 67580, and CP 96345, had a much lower affinity for the new NK(1)-sensitive sites than for the septide-sensitive sites. The hypothalamus and colliculi possess only this new subtype of NK(1) site, whereas both types of [(125)I]NKA binding sites were found in the amygdala and some other brain structures. These results not only explain the central effects of septide or SP(6-11), but also those of NKA, NPK, and NPgamma, which can be selectively blocked by NK(1) receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号