首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compartmentation of dCTP pools. Evidence from deoxyliponucleotide synthesis   总被引:1,自引:0,他引:1  
The nucleotide fraction of cultured 3T6 and 3T3 mouse fibroblasts contains deoxy-CDP choline and deoxy-CDP ethanolamine as well as the corresponding riboliponucleotides. In permeabilized cells both deoxyliponucleotides were formed from dCTP. In intact cells they could be labeled from [5-3H] deoxycytidine or cytidine via transformation of the nucleosides to dCTP. Their turnover was slow compared to that of dCTP. When rapidly growing 3T3 cells were labeled during 90 min from deoxycytidine the specific activity of dCDP choline was 2.4 times higher than that of dCTP while after labeling from cytidine both nucleotides (and CTP) reached the same specific activity under steady state conditions. Also dCDP ethanolamine was labeled more rapidly from deoxycytidine than from cytidine. Our results suggest that the deoxyliponucleotides were synthesized from a dCTP pool that was labeled preferentially from deoxycytidine. Earlier work (Nicander, B., and Reichard, P. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 1347-1351) had demonstrated synthesis of DNA from a dCTP pool labeled preferentially from cytidine. Taken together our results suggest that deoxyliponucleotides and DNA are synthesized from separate dCTP pools.  相似文献   

2.
dCTP pools equilibrated to equivalent specific activities in Chinese hamster ovary cells or in nuclei after incubation of cells with radiolabeled nucleosides, indicating that dCTP in nuclei does not constitute a distinct metabolic pool. In the G1 phase, [5-3H]deoxycytidine labeled dCTP to unexpectedly high specific activities. This may explain reports of replication-excluded DNA precursor pools.  相似文献   

3.
Pool sizes of deoxyribonucleoside triphosphates (dNTPs) in cultured cells are tightly regulated by i.al., the allosteric control of ribonucleotide reductase. We now determine the in situ activity of this enzyme from the turnover of the deoxycytidine triphosphate (dCTP) pool in rapidly growing 3T6 mouse fibroblasts, as well as in cells whose DNA replication was inhibited by aphidicolin or amethopterin, by following under steady state conditions the path of isotope from [5-3H]cytidine into nucleotides, DNA, and deoxynucleosides excreted into the medium. In normal cells as much as 28% of the dCDP synthesized was excreted as deoxynucleoside (mostly deoxyuridine), leading to an accumulation of deoxyuridine in the medium. Inhibition with amethopterin slightly increased ribonucleotide reductase activity, while aphidicolin halved the activity of this enzyme (and thymidylate synthase). In both instances all dCDP synthesized was degraded and excreted as nucleosides. This continued synthesis and turnover in the absence of DNA synthesis is in contrast to the earlier found inhibition of dCTP (and dTTP) turnover when hydroxyurea, an inhibitor of ribonucleotide reductase, was used to block DNA synthesis. To explain our results, we propose that substrate cycles between deoxyribonucleosides and their monophosphates, involving the activities of kinases and phosphatases, participate in the regulation of pool sizes. Within the cycles, a block of the reductase activates net phosphorylation, while inhibition of DNA polymerase stimulates degradation.  相似文献   

4.
Kinetic analyses of mRNA and 28-S RNA labeling [3H]uridine revealed distinctly different steady-state specific radioactivities finally reached for uridine in mRNA and 28-S RNA when exogenous [3H]uridine was kept constant for several cell doubling times. While the steady-state label of (total) UTP and of uridine in mRNA responded to the same extent to a suppression of pyrimidine synthesis de novo by high uridine concentrations in the culture medium, uridine in 28-S RNA was scarcely influenced. Similar findings were obtained with respect to labeling of cytidine in the various RNA species due to an equilibration of UTP with CTP [5-3H]Uridine is also incorporated into deoxycytidine of DNA, presumably via dCTP. The specific radioactivity of this nucleosidase attained the same steady-state value as UTP, uridine in mRNA and cytidine in mRNA. The data indicate the existence of two pyrimidine nucleotide pools. One is a large, general UTP pool comprising the bulk of the cellular UTP and serving nucleoplasmic nucleic acid formation (uridine and cytidine in mRNA, deoxycytidine in DNA). Its replenishment by de novo synthesis can be suppressed completely by exogenous uridine above 100 muM concentrations. A second, very small UTP (and CTP) pool with a high turnover provides most of the precursors for nucleolar RNA formation (rRNA). This pool is not subject to feedback inhibition by extracellular uridine to an appreciable extent. Determinations of (total) UTP turnover also show that the bulk of cellular RNA (rRNA) cannot be derived from the large UTP pool.  相似文献   

5.
The nucleoside triphosphate pools of two cytidine auxotrophic mutants of Salmonella typhimurium LT-2 were studied under different conditions of pyrimidine starvation. Both mutants, DP-45 and DP-55, are defective in cytidine deaminase and cytidine triphosphate (CTP) synthase. In addition, DP-55 has a requirement for uracil (uridine). Cytidine starvation of the mutants results in accumulation of high concentrations of uridine triphosphate (UTP) in the cells, while the pools of CTP and deoxy-CTP drop to undetectable levels within a few minutes. Addition of deoxycytidine to such cells does not restore the dCTP pool, indicating that S. typhimurium has no deoxycytidine kinase. From the kinetics of UTP accumulation during cytidine starvation, it is concluded that only cytidine nucleotides participate in the feedback regulation of de novo synthesis of UTP; both uridine and cytidine nucleotides participate in the regulation of UTP synthesis from exogenously supplied uracil or uridine. Uracil starvation of DP-55 in presence of cytidine results in extensive accumulation of CTP, suggesting that CTP does not regulate its own synthesis from exogenous cytidine. Analysis of the thymidine triphosphate (dTTP) pool of DP-55 labeled for several generations with (32)P-orthophosphate and (3)H-uracil in presence of (12)C-cytidine shows that only 20% of the dTTP pool is derived from uracil (via the methylation of deoxyuridine monophosphate); 80% is apparently synthesized from a cytidine nucleotide.  相似文献   

6.
The size of the dCTP pool has been implicated as a possible regulator of DNA synthesis. In this investigation we correlate large intracellular variations in deoxyribonucleoside triphosphate levels to the growth rates and cell-cycle kinetics of mouse S49 T-lymphoma cells. Wild-type and a mutant line AzidoC-100-5, lacking dCMP-deaminase activity resulting in a 10-fold expanded dCTP pool were studied and compared using flow cytometry, centrifugal elutriation and nucleoside triphosphate determinations. An increase in the dCTP pool was closely correlated to the passage of cells from G1 to S phase in both cell types. Addition of thymidine to wild-type and mutant cells resulted in an accumulation of cells in early S phase, concomitant with a decreased dCTP level. Mutant cells excreted large amounts of deoxycytidine into the medium which partially protected the cells from thymidine inhibition. The doubling times for the mutant and wild-type cells were very similar but the mutant had a somewhat prolonged S phase and shortened G1 phase compared with the wild-type cells. Large changes in the DNA precursor levels were produced by addition of thymidine to mutant cultures. This gave no change in the growth rate but a somewhat shortened S phase and prolonged G1. The biochemical background for these effects is discussed.  相似文献   

7.
Purine and pyrimidine deoxyribonucleoside metabolism was studied in G1 and S phase human thymocytes and compared with that of the more mature T lymphocytes from peripheral blood. Both thymocyte populations have much higher intracellular deoxyribonucleoside triphosphate (dNTP) pools than peripheral blood T lymphocytes. The smallest dNTP pool in S phase thymocytes is dCTP (5.7 pmol/10(6) cells) and the largest is dTTP (48 pmol/10(6) cells), whereas in G1 thymocytes, dATP and dGTP comprise the smallest pools. While both G1 and S phase thymocytes have active deoxyribonucleoside salvage pathways, only S phase thymocytes have significant ribonucleotide reduction activity. We have studied ribonucleotide reduction and deoxyribonucleoside salvage in S phase thymocytes in the presence of extracellular deoxyribonucleosides. Based on these studies, we propose a model for the interaction of deoxyribonucleoside salvage and ribonucleotide reduction in S phase thymocytes. According to this model, extracellular deoxycytidine at micromolar concentrations is efficiently salvaged by deoxycytidine kinase. However, due to feedback inhibition of deoxycytidine kinase by dCTP, the maximal level of dCTP which can be achieved is limited. The salvage of both deoxyadenosine and deoxyguanosine (up to 10(-4) M) is completely inhibited in the presence of micromolar concentrations of deoxycytidine, whereas the salvage of thymidine is unregulated resulting in large increases in dTTP levels. Moreover, significant amounts of the salvaged deoxycytidine is used for dTTP synthesis resulting in further increase of dTTP pools. The accumulated dTTP inhibits the reduction of UDP and CDP while stimulating GDP reduction and subsequently also ADP reduction. The end result of the proposed model is that S phase thymocytes in the presence of a wide range of extracellular deoxyribonucleoside concentrations synthesize their pyrimidine dNTP by the salvage pathway, whereas purine dNTPs are synthesized primarily by ribonucleotide reduction. Using the proposed model, it is possible to predict the relative intracellular dNTP pools found in fresh S phase thymocytes.  相似文献   

8.
The levels of the four deoxyribonucleoside triphosphate pools and the distribution of cells in the various phases of the cell cycle have been examined in Chinese hamster cells as thymidine, present as a regular constituent in the growth medium, was removed in stages. The results indicate that: 1. Duration of the DNA synthetic phase was lengthened when thymidine was removed from the growth medium. 2.Temporally correlated with lengthening of the DNA synthetic phase upon thymidine removal was a 7-fold increase in level of the dCTP pool, reduction in the dGTP pools, and little or no change in dATP pool. 3.Radioactive labeling procedures indicated that expansion of the dCTP pool could be completely accounted for by increased ribonucleotide reductase activity and that the dTTP pool switched from a largely exogenous thymidine source to endogenous dTTP synthesis as the extracellular thymidine concentration was reduced. 4.Deoxyuridine and thymidine were apparently transported by the same system in Chinese hamster cells, while deoxycytidine was transported by a different system. Although deoxycytidine transport was unaffected by thymidine, phosphorylation of intracellular deoxycytidine compounds to the triphosphate level was stimulated by thymidine. Cytidine transport was not significantly affected by thymidine.  相似文献   

9.
High levels of deoxyadenosine and deoxyguanosine in patients with inherited deficiency of either adenosine deaminase or purine-nucleoside phosphorylase, respectively, are considered to be responsible for the associated immunological disorder. The mechanism involves phosphorylation to the corresponding deoxyribonucleoside triphosphates which subsequently inhibit the CDP-reducing activity of ribonucleotide reductase. Addition of deoxycytidine protects cells from the cytotoxic effects of deoxyadenosine and deoxyguanosine by competition for phosphorylation and by replenishing dCTP, the apparent limiting DNA precursor. Addition of cytidine, but not uridine, led to a reversal of deoxyguanosine and thymidine growth inhibition, comparable to that obtained with deoxycytidine. Analysis of the intracellular nucleotide pools showed that increased levels of cytidine ribonucleotides were sufficient to overcome the inhibitory effects of dGTP and dTTP on CDP reduction, thereby circumventing a depletion of the dCTP pool. A partial reversal of deoxyadenosine toxicity was also obtained with addition of cytidine. In this case little change in the dCTP level was observed, but a decreased dGTP pool appeared to be correlated with growth inhibition. High cytidine ribonucleotide levels partially prevented this effect. The present results may encourage the use of cytidine in combination with deoxycytidine as a pharmacological regime in treatment of immunodeficiency disease associated with increased deoxyribonucleotide levels.  相似文献   

10.
The total uptake, phosphorylation and incorporation of thymidine (dThd) and deoxycytidine (dCyd) were compared in intact and reversibly permeabilized human tonsillar lymphocytes. The total uptake of [3H]dThd was lower than that of [5-3H]dCyd, but almost all of [3H]dThd was incorporated into DNA. However, the main part of [5-3H]dCyd taken up by the lymphocytes was found in the pool as phosphorylated nucleoside (55%), and only a smaller part (13%) was incorporated into DNA. Phosphorylated nucleosides were determined by DEAE-cellulose sheets in the ethanol-soluble fraction of the cells. The reversible permeabilization of lymphocytes by Dextran T-150 destroys totally the [3H]dThd incorporation, while [5-3H]dCyd incorporation decreased only to 60% of intact cells. During permeabilization the phosphorylation of both nucleosides increased severalfold. After permeabilization all [3H]dThd was in dTMP form, while [5-3H]dCyd was also found in dCDP (3%) and dCTP (38%) form. In the meanwhile, 22% of thymidine kinase, 63% of deoxycytidine kinase and 98% of DNA polymerase activity were measured in permeabilized cells as compared to intact cells. The results suggest different relationships between the lymphocyte plasma membrane and the salvage pathways of the two pyrimidine nucleosides.  相似文献   

11.
Hydroxyurea inactivates ribonucleotide reductase from mammalian cells and thereby depletes them of the deoxynucleoside triphosphates required for DNA replication. In cultures of exponentially growing 3T6 cells, with 60-70% of the cells in S-phase, 3 mM hydroxyurea rapidly stopped ribonucleotide reduction and DNA synthesis (incorporation of labeled thymidine). The pool of deoxyadenosine triphosphate (dATP) decreased in size primarily, but also the pools of the triphosphates of deoxyguanosine and deoxycytidine (dCTP) were depleted. Paradoxically, the pool of thymidine triphosphate increased. After addition of hydroxyurea this pool was fed by a net influx and phosphorylation of deoxyuridine from the medium and by deamination of intracellular dCTP. An influx of deoxycytidine from the medium contributed to the maintenance of intracellular dCTP. 10 min after addition of hydroxyurea, DNA synthesis appeared to be completely blocked even though the dATP pool was only moderately decreased. As possible explanations for this discrepancy, we discuss compartmentation of pools and/or vulnerability of newly formed DNA strands to nuclease action and pyrophosphorolysis.  相似文献   

12.
We have found that chronically HIV-1(IIIB)-infected H9 cells showed 21-fold resistance to 1-beta-D-arabinofuranosylcytosine (ARA-C) compared with uninfected H9 cells. In the infected H9 cells, a 37% increase of dCTP pool and a 34% increase of dATP were observed, and no alteration of dTTP and dGTP was observed, compared with the uninfected H9 cells. A marked decrease of ARA-CTP generation was observed in the infected H9 cells after 3-h incubation with 0.1-10 microM ARA-C. The level of deoxycytidine kinase activity with ARA-C as substrate was similar in both the infected and the uninfected cells; however, a 37-fold increase of cytidine deaminase activity was observed in the infected H9 cells. These results indicate that the induction of cytidine deaminase activity by HIV-1(IIIB) infection conferred ARA-C resistance to H9 cells. This conclusion was supported by the observation that a marked reversal of ARA-C resistance in the infected H9 cells occurred after treatment with the inhibitor of cytidine deaminase, 3,4,5,6-tetrahydrouridine. The understanding of these cellular alterations in drug sensitivity may facilitate the development of effective therapeutic strategies against HIV-1-infected cells.  相似文献   

13.
12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulated the release of [3H]ethanolamine from HeLa cells prelabeled with [3H]ethanolamine within 2 min, and of [3H]choline from cells prelabeled with [3H]choline after a lag of 10-20 min. This result suggests that TPA activates phospholipase D. Propranolol alone or propranolol plus TPA stimulated phosphatidic acid (PA) labeling in cells prelabeled with [3H]hexadecanol. In the presence of ethanol, TPA stimulated the accumulation of labeled phosphatidylethanol (PEth); no PEth was formed in the absence of TPA. TPA-dependent PEth accumulation was not observed in cells pretreated with TPA to down-regulate protein kinase C, whereas propranolol-induced accumulation of PA was unaffected by TPA pretreatment. Incubation of prelabeled cells with propranolol alone caused a rapid loss of label and phospholipid mass from both phosphatidylethanolamine and phosphatidylcholine (PC) together with an accumulation of PA and phosphatidylinositol plus phosphatidylserine. When [3H]hexadecanol-prelabeled cells were pulse labeled with 32P to label nucleotide pools, propranolol induced the accumulation of both 3H- and 32P-labeled PA. When cells were prelabeled with lyso-PC double labeled with 3H and 32P, and incubated with propranolol, only 3H-labeled PA accumulated, indicating that the pathways involved in the basal turnover of PC resulted in the loss of 32P from the lipid. These results suggest that the basal turnover of phosphatidylethanolamine and PC involves the sequential actions of phospholipase C, diglyceride kinase, and PA phosphohydrolase.  相似文献   

14.
In exponentially growing 3T6 cells, the synthesis of deoxythymidine triphosphate (dTTP) is balanced by its utilization for DNA replication, with a turnover of the dTTP pool of around 5 min. We now investigate the effects of two inhibitors of DNA synthesis (aphidicolin and hydroxyurea) on the synthesis and degradation of pyrimidine deoxynucleoside triphosphates (dNTPs). Complete inhibition of DNA replication with aphidicolin did not decrease the turnover of pyrimidine dNTP pools labeled from the corresponding [3H]deoxynucleosides, only partially inhibited the in situ activity of thymidylate synthetase and resulted in excretion into the medium of thymidine derived from breakdown of dTTP synthesized de novo. These data demonstrate continued synthesis of dTTP in the absence of DNA replication. In contrast, hydroxyurea decreased the turnover of pyrimidine dNTP pools 5-50-fold. Hydroxyurea is an inhibitor of ribonucleotide reductase and stops DNA synthesis by depleting cells of purine dNTPs but not pyrimidine dNTPs. Our results suggest that degradation of dNTPs is turned off by an unknown mechanism when de novo synthesis is blocked.  相似文献   

15.
The rate-limiting reaction in the formation of phosphatidylcholine by type II cells isolated from fetal rat lung was examined. Studies on the uptake of [Me-3H]choline and its incorporation into its metabolites indicated that in these cells the choline phosphate pool was much larger than both the choline and CDPcholine pools. Chemical measurements of the pool sizes showed that the choline phosphate pool was indeed much larger than the intracellular choline and CDPcholine pools. Pulse-chase studies with [Me-3H]choline revealed that labelled choline taken up by the cells was rapidly phosphorylated to choline phosphate and that the radioactivity lost from choline phosphate during the chase period appeared in phosphatidylcholine. Little change was observed in the labelling of CDPcholine during the chase period. These results indicate that cholinephosphate cytidylyltransferase catalyzes a rate-limiting reaction in phosphatidylcholine formation by fetal rat lung type II cells.  相似文献   

16.
The calculated rate of DNA synthesis using [5-3H]TdR was about 4 times higher than in the case of [5-3H]CdR labeling, even after correction for the specific radioactivities of the intracellular pools. These data show a compartmentation of dCTP pools in lymphocytes. Hydroxyurea increased the specific activities of both dTTP and dCTP pools so that the calculated rate of DNA synthesis became equal. The same effect was found for araC treatment, but not for fluorodeoxyuridine. dCTP was supplied from CTP which is the lowest ribonucleotide pool in lymphocytes. Different functions of the two dCTP pools are proposed: one serving DNA replication; the other one supplies phospholipid precursors and DNA repair.  相似文献   

17.
Mark Meuth 《Mutation research》1983,110(2):383-391
Chinese hamster ovary cell strains deficient in deoxycytidine kinase activity were selected by isolating mutants resistant to high concentrations of the analogue arabinosyl cytosine. Mutants isolated were deficient in the pool of dCTP, supporting earlier a suggestion that the deoxycytidine kinase may play a role in the turnover and maintenance of the dCTP pool. Consistent with earlier observations that increased intracellular levels of dTTP relative to dCTP lead to increased sensitivy to monofunctional DNA alkylating agents, deoxycytidine kinase-deficient mutants showed a 2–5-fold increase in sensitivity to the cytotoxic and mutagenic effects of one agent, ethyl methanesulfonate (EMS). The survival of the two kinase-deficient strains after mutagen treatment was clearly related to dCTP level as the strain with lowest dCTP was most sensitive to EMS. Thus hypersensitivity to this class of DNA damaging agents can result from cellular mutations decreasing the intracellular level of dCTP.  相似文献   

18.
Nuclear and whole-cell deoxynucleoside triphosphate (dNTP) pools were measured in HeLa cells at different densities and throughout the cell cycle of synchronized CHO cells. Nuclei were prepared by brief detergent (Nonidet P-40) treatment of subconfluent monolayers, a procedure that solubilizes plasma membranes but leaves nuclei intact and attached to the plastic substratum. Electron microscopic examination of monolayers treated with Nonidet P-40 revealed protruding nuclei surrounded by cytoskeletal remnants. Control experiments showed that nuclear dNTP pool sizes were stable during the time required for isolation, suggesting that redistribution of nucleotides during the isolation procedure was minimal. Examination of HeLa whole-cell and nuclear dNTP levels revealed that the nuclear proportion of each dNTP was distinct and remained constant as cell density increased. In synchronized CHO cells, all four dNTP whole-cell pools increased during S phase, with the dCTP pool size increasing most dramatically. The nuclear dCTP pool did not increase as much as the whole-cell dCTP pool during S phase, lowering the relative nuclear dCTP pool. Although the whole-cell dNTP pools decreased after 30 h of isoleucine deprivation, nuclear pools did not decrease proportionately. In summary, nuclear dNTP pools in synchronized CHO cells maintained a relatively constant concentration throughout the cell cycle in the face of larger fluctuations in whole-cell dNTP pools. Ribonucleotide reductase activity was measured in CHO cells throughout the cell cycle, and although there was a 10-fold increase in whole-cell activity during S phase, we detected no reductase in nuclear preparations at any point in the cell cycle.  相似文献   

19.
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.  相似文献   

20.
The biosynthesis of 2'-deoxyuridine monophosphate (dUMP) has been studied in a cytidine- and uracil-requiring mutant of Salmonella typhimurium (DP-55). The dUMP pool and the thymidine monophosphate (dTMP) pool of DP-55, grown in the presence of (3)H-uracil and unlabeled cytidine, are found to have the same specific activities. However, only 30% of the dUMP and the dTMP is synthesized from a uridine nucleotide. Seventy per cent is derived directly from a cytosine compound. The identification and partial purification of a Mg(2+)-dependent 2'-deoxycytidine triphosphate (dCTP) deaminase from S. typhimurium suggests that the combined action of dCTP deaminase and 2'-deoxyuridine triphosphate pyrophosphatase accounts for 70% of the dUMP, and therefore the dTMP, synthesized in vivo. The introduction of a thymine requirement (i.e., a block in thymidylate synthetase) into DP-55 results in a 100-fold increase in the size of the dUMP pool. However, the relative contribution of the uridine and cytidine pathways to dUMP synthesis is unaltered. The high dUMP pool is accompanied by extensive catabolism of dUMP to uracil. Partial thymine starvation of the cells results in a significant increase in the dUMP and dCTP pools. Moreover, an increase in the contribution of the dCTP pathway to dUMP synthesis is observed. As a result of these changes the catabolism of dUMP to uracil is augmented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号