首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to determine the effects of Taxol pretreatment on the morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrified porcine oocytes matured in vitro. The result showed that: (1) the rate of normal mitochondria distribution in fresh group (92.85%) was significantly higher (P < 0.05) than that in other three groups (toxicity, 72.48%; vitrification, 50.83%; Taxol + vitrification, 69.98%) and Taxol pretreatment significantly (P < 0.05) increased the ratio of normal mitochondria distribution in vitrified oocytes; (2) lipid droplets in vitrified oocytes got cracked, resulting in a great number of smaller lipid droplets (diameter <5 μm). The number of lipid droplets (5–10 μm in diameter) in vitrified oocytes pretreated with Taxol was higher (P < 0.05) than that in the oocytes without Taxol pretreatment (81.87 ± 13.63 vs. 64.27 ± 13.72); (3) both toxicity and vitrification cause the difference in the ultrastructure of mitochondria and lipid droplets. Mitochondria were well maintained in the form of typical round and ellipse shape with smooth surface and clear outline and lipid droplets existed in the form of integrity in Taxol pretreatment group.In conclusion, Taxol pretreatment has positive effects on vitrified porcine oocytes matured in vitro in terms of morphology, distribution and ultrastructure of mitochondria and lipid droplets.  相似文献   

2.
Fu XW  Wu GQ  Li JJ  Hou YP  Zhou GB  Lun-Suo  Wang YP  Zhu SE 《Theriogenology》2011,75(2):268-275
In order to examine its effect on oocyte lipid content and cryosurvival, Forskolin was added to the medium for in vitro maturation of porcine oocytes. Treatments were control (IVM without Forskolin during the 42 h incubation period), addition of 10 μM Forskolin for the entire 42 h (0-42) and addition of 10 μM Forskolin between 24 and 42 h only (24-42). In Experiment 1, treatments did not differ significantly in cleavage rate, but the blastocyst formation rate was lower in the 0-42 group than for control and 24-42 group oocytes (17, 32 and 40%, respectively; P < 0.05). It was shown in Experiment 2 that Forskolin treatment from 0-42 h and from 24-42 h significantly reduced lipid content of oocytes compared to that of control cells (65 and 99 vs. 140 μm2 intensity of fluorescence, respectively; P < 0.05). In Experiment 3, the percentage of oocyte survival after cryopreservation and thawing was significantly higher in both Forskolin treatment groups than in control oocytes (72% for 0-42, 65% for 24-42 and 52% for control; P < 0.05). However, Forskolin treatment did not increase cleavage rates of vitrified in vitro matured porcine oocytes (Control group 28%, 0-42 h group 0%, 24-42 h group 26.67%). Addition of Forskolin affected the nuclear maturation of porcine oocytes. The percentage of PBE (polar body extrusion) were significantly reduced in the 0-42 h group (0-42 h group 42.00 ± 2.08 vs. Control group 79.70 ± 2.82 and 24-42 h group 70.60 ± 2.83; P < 0.05). The 24-42 h group showed similar nuclear status to that of the Control group. We propose that delipation engendered by incubation with 10 μM Forskolin during 24-42 hours of maturation increased cryosurvival of in vitro-maturated porcine oocytes and that attendant chemical lipolysis did not impair their further development as it may have done in oocytes incubated with Forskolin for the full 42 h.  相似文献   

3.
Porcine animal models are used to advance our understanding of human physiology. Current research is also directed at methods to produce transgenic pigs. Cryobanking gametes and embryos can facilitate the preservation of valuable genotypes, yet cryopreserving oocytes from pigs has proven very challenging. The current study was designed to understand the effects of anisotonic solutions on in vitro matured porcine oocytes as a first step toward designing improved cryopreservation procedures. We hypothesized that the proportion of oocytes demonstrating a normal spindle apparatus and in vitro developmental potential would be proportional to the solution osmolality. Oocytes were incubated for 10 min at 38 degrees C in various hypo- or hypertonic solutions, and an isotonic control solution and then assessed for these two parameters. Our results support the hypothesis, with an increasing proportion of spindles showing a disrupted structure as the levels of anisotonic exposure diverge from isotonic. Only about half of the oocytes maintained developmental potential after exposure to anisotonic solutions compared to untreated controls. Oocyte volume displayed a linear response to anisotonic solutions as expected, with an estimated relative osmotically inactive cell volume of 0.178. The results from this study provide initial biophysical data to characterize porcine oocytes. The results from future experiments designed to determine the membrane permeability to various cryoprotectants will allow predictive modeling of optimal cryopreservation parameters and provide a basis for designing improved cryopreservation procedures.  相似文献   

4.
《Cryobiology》2016,73(3):274-282
Stabilizing the cytoskeleton system during vitrification can improve the post-thaw survival and development of vitrified oocytes. The cytoskeleton stabilizer cytochalasin B (CB) has been used in cryopreservation to improve the developmental competence of vitrified oocytes. To assess the effect of pretreating matured buffalo oocytes with CB before vitrification, we applied 0, 4, 8, or 12 μg/mL CB for 30 min. The optimum concentration of CB treatment (8 μg/mL for 30 min) was then used to evaluate the distribution of microtubules and microfilaments, the expression of the cytoskeleton proteins actin and tubulin, and the developmental potential of matured oocytes that were vitrified-warmed by the Cryotop method. Western blotting demonstrated that vitrification significantly decreased tubulin expression, but that the decrease was attenuated for oocytes pretreated with 8 μg/mL CB before vitrification. After warming and intracytoplasmic sperm injection, oocytes that were pretreated with 8 μg/mL CB before vitrification yielded significantly higher 8-cell and blastocyst rates than those that were vitrified without CB pretreatment. The values for the vitrified groups in all experiments were significantly lower (P < 0.01) than those of the control groups. In conclusion, pretreatment with 8 μg/mL CB for 30 min significantly improves the cytoskeletal structure, expression of tubulin, and development capacity of vitrified matured buffalo oocytes.  相似文献   

5.
Vitrification induces mitochondrial dysfunction in warmed oocytes, and degeneration and biogenesis of mitochondria are crucial for maintaining oocyte quality. The present study addresses a hypothesis that treatment of vitrified-warmed oocytes with resveratrol could improve the viability of oocytes by activating mitochondrial biosynthesis. Cumulus oocyte complexes (COCs) collected from gilt ovaries were vitrified, warmed, and cultured in a medium containing vehicle or 1 μM resveratrol. Resveratrol treatment improved survival, maturation, and mitochondrial membrane potential of vitrified-warmed oocytes, but did not improve the development into blastocysts after parthenogenetic activation. Resveratrol treatment increased mitochondrial synthesis, as determined by the expression levels of TOMM20 and mitochondrial DNA copy number, in vitrified-warmed oocytes, but not in non-vitrified oocytes. In addition, the effect of resveratrol treatment on mitochondrial synthesis was reduced by EX527, a SIRT1 inhibitor. Resveratrol treatment of vitrified-warmed oocytes increased the expression levels of genes involved in mitochondrial synthesis (TFAM, POLG, and PGC1α) and increased nuclear translocation of NRF2. Furthermore, vitrification induced mitophagy, as confirmed by a reduction in TOMM20 expression and decreased p62 aggregation, whereas resveratrol treatment did not affect these mitophagic features. In conclusion, vitrification induced mitochondrial clearance in oocytes, whereas activation of SIRT1 by resveratrol treatment facilitated the recovery of vitrified-warmed oocytes through the activation of mitochondrial synthesis.  相似文献   

6.
The developmental ability of nuclear transplant sheep embryos derived from in vitro matured oocytes was studied by controlling cell-cycle coordination of donor embryonic nuclei and recipient cytoplasts. Oocytes were recovered from nonatretic antral follicles of adult sheep ovaries and cocultured with follicle shells in M199-based medium supplemented with gonadotrophins in a nonstatic system. Effective activation of IVM oocytes was obtained by applying two pulses of 1.0 kv/cm 22 min apart in inositol-based electroporation medium to oocytes matured in vitro for 27 hr. Synthesis of DNA (S-phase) was assessed by BrdU incorporation and was found to initiate around 5 hpa (hours postactivation) and to persist until 18 hpa. Mitotic blastomeres were induced by treating embryos with 6.6 μM nocodazole for 14–17 hr. Three types of transfers were compared directly: “S → S,” early embryonic nuclei (mostly in S-phase) were transferred to presumptive S-phase cytoplasts; “M → MII,” nocodazole-treated embryonic nuclei (most in M-phase) were transferred to MII-phase cytoplasts; and control (S → MII), conventional nuclear transfer of fusion and activation simultaneously. The results showed that fusion and recovery rates did not differ among the three groups. However, after 6 days of in vivo culture, the morula and blastocyst formation rate was significantly higher for the M → MII combination than for the control (28.3% vs. 8.1%, P < 0.05), while no significant differences in developmental rate were observed between S → S and M → MII, and between S → S and control, though developmental rate was also increased for S → S compared to control (20.9% vs. 8.1%, P > 0.05). Transfer of blastocysts derived from M → MII or S → S nuclear cytoplasmic reconstitution to synchronized recipient ewes resulted in the birth of lambs. These data suggest that in vitro matured oocytes can support full-term development of nuclear transplant sheep embryos when the cell cycle of nucleus and cytoplasm is coordinated, and that M → MII nuclear transfer might be an efficient and simple way to improve the developmental competence of the reconstituted embryos. Mol. Reprod. Dev. 47:255–264, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The objective was to evaluate the effect of three cryopreservation methods on the in vitro maturation (IVM) and membrane integrity (MIn) of immature equine oocytes. An open pulled straw (OPS) method, a novel solid surface vitrification (SSV) process, and the addition of a synthetic ice blocker were evaluated. Compared with the control group (N = 269), the OPS (N = 159) and the SSV (N = 202) cryopreservation methods decreased both IVM (50.9 vs. 13.3 and 9.4%, respectively; P < 0.001) and MIn (76.6 vs. 31.1 and 33.7%; P < 0.001) of immature equine oocytes. However, inclusion of 0.1% ice blocker in the OPS vitrification process increased the rates of both IVM (30.5%; P < 0.01) and MIn (45.8%; P < 0.05) of the oocytes (N = 59). Including 0.1% ice blocker in the SSV process improved the IVM rate (20.9%; P < 0.05), whereas MIn remained compromised in this group (N = 67). However, increasing the concentration of the ice blocker (to 1.0%) in the cryopreservation methods did not significantly improve rates of IVM. In conclusion, the addition of a synthetic ice blocker (0.1%) to both cryopreservation processes significantly increased rates of both IVM and MIn of immature equine oocytes cryopreserved by OPS.  相似文献   

8.
The purpose of this study was to determine whether the mitochondrial membrane potential, pro-apoptotic gene expression, and ubiquitylation status of zona pellucida proteins (ZP1, ZP2, and ZP3) of vitrified GV-stage mature oocytes could be protected by treatment with cholesterol-loaded methyl-β-cyclodextrin (CLC) prior to vitrification. Porcine GV oocytes were treated with CLC prior to the vitrification process, and the effects on the mitochondrial membrane potential and ZP ubiquitylation status were determined by JC-1 single staining and western blot assays. We found that porcine GV-stage oocytes were treated with CLC at different concentrations (0.5, 5, and 10 mg/mL) prior to vitrification improved in vitro maturation of these oocytes (P < 0.05). The mitochondrial membrane potential of matured oocyte without vitrification or treated with 5 mg/mL CLC vitrification treatment was higher than that of the 0 mg/mL CLC group and other treatment groups (vitrified) (P < 0.05). The expression of Caspase 3, Caspase 8, and Caspase 9 genes in the high concentration CLC treatment groups (5 and 10 mg/mL) was significantly lower than that in the 0 (vitrified) mg/mL CLC group (P < 0.05). ZPs protein and ZP3 protein ubiquitylation were also higher in the non-vitrified controls, 5 and 10 mg/mL CLC-treated oocytes than in the 0 (vitrified) and 0.5 mg/mL vitrified groups (P < 0.05). Whereas the sperm–oocyte binding capacity was improved in the CLC treatment groups (P < 0.05) but the embryonic development rate was not improved. In conclusion, pretreatment with CLC can improve the survival rate and maturation rate of oocytes and protect their mitochondria and zona pellucida of porcine oocytes from cryodamage during the vitrification process.  相似文献   

9.
The objective of this study was to investigate the potential of swamp buffalo oocytes vitrified-warmed at the metaphase of the second meiotic cell division (M-II) stage to develop to the blastocyst stage after parthenogenetic activation (PA) or intracytoplasmic sperm injection (ICSI). In Experiment 1, we examined the effects of exposure time of oocytes to cryoprotectants (CPA) on their in vitro development after PA. In vitro matured (IVM) oocytes were placed in 10% dimethylsulfoxide (DMSO) + 10% ethylene glycol (EG) for 1 min and then exposed to 20% DMSO + 20% EG + 0.5 M sucrose for 30 s, 45 s or 60 s (1 min + 30 s, 1 min + 45 s and 1 min + 60 s groups, respectively). The oocytes were then exposed to warming solution (TCM199 HEPES + 20% FBS and 0.5M sucrose) for 5 min and then washed in TCM199 HEPES + 20% FBS for 5 min. IVM oocytes without CPA treatments served as a control group. The viability assessed by fluorescein diacetate (FDA) staining was 100% in all groups. The developmental rates after PA to the blastocyst stage between 1min+30s (16%) and control (26%) groups did not differ significantly, but they were significantly higher than those in 1 min + 45 s (10%) and 1 min + 60 s (2%) groups. In Experiment 2, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on the in vitro development after PA of oocytes vitrified by the microdrop method. The viabilities in vitrified 1 min + 30 s, 1 min + 45 s and the control (without CPA treatments) groups were not different (97%, 95% and 100%, respectively). The development of surviving oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (8%) was significantly higher than that in the vitrified 1 min + 45 s group (4%) and significantly lower than those in control group (26%). In Experiment 3, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on in vitro development after ICSI of vitrified oocytes. Viabilities in vitrified oocytes among 1 min + 30 s, 1 min + 45 s and control groups were not different (96%, 91% and 100%, respectively). After ICSI, vitrified-warmed oocytes were activated and oocytes with the second polar body were cultured for 7 days. The development of ICSI oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (11%) was significantly higher than that in the vitrified 1 min + 45 s (7%) group and significantly lower than those in control group (23%). In conclusion, our study demonstrated that the 1 min + 30 s CPA treatment regimen could yield the highest blastocyst formation rates after PA and ICSI for oocytes vitrified by the microdrop method.  相似文献   

10.
The purpose of our study was to assess the effect of vitrification with or without the presence of calcium in the vitrification solution on the: 1) diameter of oocytes and thickness of the zona pellucida, 2) zona pellucida hardening, 3) expression of mRNA follistatin (FST) and cathepsin B (CTSB) in oocytes and 4) developmental competence of embryos derived from in vitro matured and vitrified oocytes.The results of our study demonstrate, that vitrification did not alter thickness of the zona pellucida and diameter of the oocytes, however it triggered hardening of the zona pellucida. The presence of calcium in the vitrification solutions intensified hardening of zona in immature and mature oocytes (P < 0.04, P < 0.001, respectively) and provoked increased mRNA FST expression in oocytes matured in vitro compared to immature oocytes (P < 0.01) and those vitrified without calcium (P < 0.004). CTSB mRNA expression was increased in immature oocytes and oocytes vitrified with calcium compare to mature oocytes (P < 0.02). The developmental potential of vitrified oocytes was impaired compared to non-vitrified oocytes, being more evident in oocytes vitrified with calcium.In summary, vitrification did not change the oocyte diameter and thickness of the zona pellucida and expression of FST and CTSB mRNA. It diminished developmental potential of the vitrified oocytes. The presence of calcium in the vitrification solutions increased hardening of zona pellucida as well as affected the level of FST and CTSB mRNA in oocytes and developmental potential of these oocytes.  相似文献   

11.
The present study was designed to determine whether different calcium concentrations in the vitrification solutions could improve the developmental competence of in vitro matured ovine oocytes after cryopreservation. In vitro matured oocytes were vitrified with 16.5% ethylene glycol (EG) + 16.5% dimethylsulfoxide (DMSO) vitrification media. The base media contain different calcium concentrations, so that five experimental groups were obtained: TCM/FCS (TCM 199 + 20% fetal calf serum (FCS), [Ca2+] 9.9 mg/dl); PBS/FCS (Dulbecco Phosphate Buffered Saline (PBS) + 20% FCS, [Ca2+] 4.4 mg/dl); PBSCaMg free/FCS (PBS without Ca2+ and Mg2+ + 20% FCS [Ca2+] 2.2 mg/dl); PBS/BSA (PBS + 0.4% bovine serum albumin (BSA), [Ca2+] 3.2 mg/dl) and PBSCaMg free/BSA (PBS without Ca2+ and Mg2+ +0.4% BSA, [Ca2+] 0.4 mg/dl). After warming, the oocytes from the five experimental groups were assessed for survival, spontaneous parthenogenetic activation and developmental capacity via in vitro fertilization. Oocyte survival after vitrification procedures was better preserved in group PBSCaMg free/FCS compared to the others (P < 0.05). In addition, a positive correlation was found between calcium concentration in vitrification solutions and spontaneous parthenogenetic activation (correlation index 0,82; P < 0.001). Development of vitrified oocytes was significantly affected by vitrification media composition (P < 0.01). In particular, oocytes from group PBSCaMg free/FCS led to higher cleavage rates and blastocyst rate compared to the others. Our data showed that lowering calcium concentration in the vitrification medium improves the blastocyst rate of vitrified ovine oocytes, probably reducing the effect of EG + DMSO during vitrification. On the contrary, the replacement of FCS with BSA dramatically reduces the developmental potential of these oocytes.  相似文献   

12.
The present study was carried out to investigate how the interactions between aging, vitrification and post-warming interval affect the credibility of sheep MII-oocytes for in vitro fertilization (IVF), intracytoplasmic injection (ICSI), and parthenogenetic activation (PA). According to our results, aged oocytes had significantly higher rates of chromosome and spindle abnormalities compared to young oocytes. However after vitrification-warming, the total rates of these abnormalities were not significantly different between aged and young oocytes. Unvitrified-aged, and vitrified young and aged oocytes had comparable ultrastructural characteristics, whereas they were completely dissimilar in compared with unvitrified-young oocytes. Although mRNA abundance was reduced during vitrification-warming in both aged and young oocytes, the post-warming interval could improve the relative mRNA abundance. Aged oocytes had lower capacity for IVF and ICSI in compared with young oocytes, but had similar pattern for PA process. The vitrification process decreased developmental competence of both aged and young oocytes in compared with young ones, particularly when warmed oocytes were rested for 2 h before IVF, ICSI and PA. The results of the present study showed that in vitro aged oocytes had higher capacity to be used for parthenogenetic studies rather than IVF and ICSI. Furthermore, it was shown that vitrified oocytes had a time-dependent decline in quality and developmental potential. Notably, the speed of this decline was higher in vitrified-young oocytes, indicating that the vitrified oocytes do not require to be rested post warming. Conclusively, the results of this study can be useful in preserving in vitro aged oocytes to provide a valuable and easy access source of oocytes for research purposed studies.  相似文献   

13.
The susceptibility of in vitro matured (IVM) porcine oocytes to be fertilized in vitro after vitrification was investigated. IVM oocytes were cryopreserved by solid surface vitrification (SSV) or treated with cryoprotectants (toxicity control, TC). Control oocytes were not treated or vitrified. Live oocytes in the three groups were in vitro fertilized (IVF) and then cultured (IVC) for 6 days. In vitro maturation and IVC were performed under 5% or 20% O(2) tension. The percentage of live oocytes in the SSV group was lower than those in the control and TC groups. Fertilization rates after SSV were significantly lower than in the control group. Significantly fewer penetrated oocytes formed male pronuclei in the SSV group than in the control and TC groups. Cleavage rates were significantly lower in the SSV group than in the control and TC groups. Blastocyst formation rates in the control and TC groups were similar, whereas only a single embryo developed to the blastocyst stage from 113 oocytes after vitrification. Blastocyst formation rates in the control group and in the TC group were significantly higher under 5% O(2) IVC than under 20% O(2) IVC. Oxygen tension during IVM had no effect on embryo development. The glutathione (GSH) content of vitrified oocytes was significantly lower than in the controls. In contrast, the H(2)O(2) level was higher in vitrified oocytes than in control oocytes. Vitrification caused parthenogenetic activation in 44.9% of unfertilized oocytes. This significant increase in parthenogenetic activation along with significantly dropped GSH level in vitrified oocytes may explain the decreased ability of the SSV group to form male pronuclei. These factors might have contributed to the poor developmental competence of vitrified oocytes.  相似文献   

14.
Fujihira T  Kishida R  Fukui Y 《Cryobiology》2004,49(3):286-290
In the present study, effects of concentration and pretreatment time of cytochalasin B (CB), and of two types of cryoprotectant solutions on the nuclear maturation of vitrified-warmed porcine oocytes were examined. Also, the developmental capacity of vitrified immature porcine oocytes following intracytoplasmic sperm injection (ICSI) was investigated. The nuclear maturation rate (46.8%) of the vitrified-warmed oocytes treated with 7.5 microg/mL CB for 30 min was significantly higher (P < 0.05) than those (13.9-39.2%) of the vitrified-warmed oocytes treated with 0, 2.5, or 5.0 microg/mL CB for 10 or 30 min. Additionally, the nuclear maturation rate of oocytes treated with CB and vitrified in ethylene glycol (EG) (37.1%) was significantly higher (P < 0.05) than that of EG + dimethyl sulfoxide (Me(2)SO) (23.9%). However, no significant differences were observed in the cleavage and blastocyst development rates among the control (45.2 and 20.0%, respectively), the EG group (37.8 and 13.5%, respectively) and the EG + Me(2)SO group (39.3 and 14.3%, respectively). These results demonstrated that: (1) pretreatment with 7.5 microg/mL CB was beneficial for the vitrification of immature porcine oocytes; (2) the combination of EG and Me(2)SO as a cryoprotectant was not advantageous for in vitro maturation (IVM) of vitrified immature porcine oocytes; and (3) vitrified-warmed porcine oocytes matured after IVM, developed to the blastocyst stage without distinct differences compared to fresh oocytes following ICSI.  相似文献   

15.
Transmission electron microscopy (TEM) was used to evaluate the fine structure of equine oocytes cultured in vitro. Oocytes obtained by follicular aspiration were cultured for either zero or 15 hr. After treatment oocytes were processed either by light microsocopy (nuclear evaluation) or TEM (cytoplasmic evaluation). Those oocytes cultured for 15 hr were incubated in modified TCM 199 with 15% (v/v) mare serum (day of ovulation) at 39 ± 0.2°C. Evaluation using TEM revealed that cortical granules were present in all oocytes. However, zero-time oocytes contained few cortical granules, and these were scattered throughout the cytoplasm, whereas 15 hr oocytes contained numerous cortical granules primarily found in very close proximity to the oolemma. Further ultrastructural analysis of both groups revealed organelle structure similar to that previously described for in vivo matured equine oocytes. Evaluation of nucelar maturity (lacmoid stain) showed that 15 hr of culture resulted in significant numbers of oocytes at metaphase II (8/17; 47%). These data demonstrate that oocytes cultured for 15 hr in modified TCM 199 with 15% mare serum (day of ovulation) are mature with respect to nuclear configuration and cortical granule migration and, therefore, would be appropriate candidates for in vitro fertilization. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Gupta MK  Uhm SJ  Lee HT 《Theriogenology》2007,67(2):238-248
Cryopreservation of normal, lipid-containing porcine oocytes has had limited practical success. This study used solid surface vitrification (SSV) of immature germinal vesicle (GV) and mature meiosis II (MII) porcine oocytes and evaluated the effects of pretreatment with cytochalasin B, cryoprotectant type (dimethylsulfoxide (DMSO), ethylene glycol (EG), or both), and warming method (two-step versus single-step). Oocyte survival (post-thaw) was assessed by morphological appearance, staining (3',6'-diacetyl fluorescein), nuclear maturation, and developmental capacity (after in vitro fertilization). Both GV and MII oocytes were successfully vitrified; following cryopreservation in EG, more than 60% of GV and MII stage porcine oocytes remained intact (no significant improvement with cytochalasin B pretreatment). Oocytes (GV stage) vitrified in DMSO had lower (P<0.05) nuclear maturation rates (31%) than those vitrified in EG (51%) or EG+DMSO (53%). Survival was better with two-step versus single-step dilution. Despite high survival rates, rates of cleavage (20-26%) and blastocyst formation (3-9%) were significantly lower than for non-vitrified controls (60 and 20%). In conclusion, SSV was a very simple, rapid, procedure that allowed normal, lipid-containing, GV or MII porcine oocytes to be fertilized and develop to the blastocyst stage in vitro.  相似文献   

17.
The aim of this study was to evaluate the association of equilibration manners with warming procedures, and the different permeating cryoprotectants (pCPAs) effects under two temperatures, in terms of survival, maturation and subsequent parthenogenetic development of porcine immature oocytes after Cryotop vitrification. In Experiment 1, oocytes were equilibrated by exposure to 5% (v/v) ethylene glycol (EG) for 10 min (EM1) or stepwise to 7.5% (v/v) and 15% (v/v) EG for 2.5 min respectively (EM2). Warming procedures were performed in 1.0 M sucrose for 1 min, then in 0.5 and 0.25 M sucrose for 2.5 min respectively (WP1), or in 0.5, 0.25 and 0.125 M sucrose each step for 2 min (WP2), or in 0.25, 0.125 and 0.063 M sucrose each step for 2 min (WP3). After 2 h of warming, the survival rate of oocytes treated by EM1 and WP1 was significantly higher (P < 0.05) than that of the other groups. Moreover, a similar proportion of survival and nuclear maturation in all vitrified groups was obtained after completion of the IVM. No significant difference in blastocyst development was observed among vitrified groups except the group treated by EM2 and WP3. In Experiment 2, oocytes were vitrified by using EG alone, EG combined with dimethyl sulphoxide (EG + DMSO) or propylene glycol (EG + PROH) as pCPAs under 25 °C and 39 °C. The percentages of cryosurvival and nuclear maturation were similar in all vitrified groups. Under 25 °C, the embryo development and total cell numbers of blastocysts were not significantly different among EG, EG + DMSO and EG + PROH groups. However, the application of EG + PROH at 39 °C resulted in significantly decreased both cleavage and blastocyst formation rates. In conclusion, our data showed that equilibration manner and warming procedure affect the cryosurvival of porcine immature oocytes, and the combination of pCPAs cannot give a better cryopreservation outcome whether 25 °C or 39 °C. Notably, the Cryotop vitrification accompanied by our modified strategy for porcine immature oocytes could achieve high survival and respectable blastocyst production.  相似文献   

18.
The aim of the current work was to evaluate applicability of triacetate cellulose hollow fiber vitrification (HFV) method for cryopreservation of groups of in vitro matured bovine oocytes (12–17 oocytes per device). We also attempted to optimize HFV protocol by altering concentration of non-permeating cryoprotectant (sucrose) in vitrification solution and concentration of extracellular Ca2+ by using a calcium-free base medium for preparation of vitrification/rewarming solutions with ethylene glycol (EG) as a single permeating cryoprotectant. Neither of modifications of HFV protocol significantly affected survival or fertilization rates of the vitrified bovine oocytes. Embryo development rates in the vitrification groups were lower than those in the control (31.2% of blastocysts at Day 8 post IVF). Use of vitrification/rewarming solutions with lower Ca2+ concentration and EG did not significantly improve embryo development rates. An increase of sucrose concentration in vitrification solution from 0.5 to 1.0 M significantly improved blastocyst yield on Day 8 post IVF (21.1–23.4% vs 3.1–3.5%; p < 0.05). Obtained results indicated that sufficient dehydration of the oocytes and/or the solution surrounding them in hollow fiber before immersion into liquid nitrogen is an important factor for successful vitrification. Use of HFV method allowed simplification and standardization of vitrification/rewarming procedures. Triacetate cellulose hollow fibers can be used successfully for cryopeservation of groups of in vitro matured bovine oocytes.  相似文献   

19.
This work studies the effect of vitrification of in vitro matured (IVM) prepubertal goat oocytes on: 1) oocyte damage assessed by reactive oxygen species (ROS) level and apoptosis and 2) embryo development after Intracytoplasmic sperm injection (ICSI) and Parthenogenic Activation (PA). Oocytes were IVM in supplemented TCM-199 for 22–24 h. Control group oocytes matured during 24 h were directly used for the analysis after IVM. Vitrified/warmed IVM-oocytes were vitrified after 22 h of IVM in 15% ethylene glycol (EG), 15% dimethyl sulfoxide (Me2SO) and 0.5 M sucrose and after subjected to warming procedure. Oocyte ROS level was measured by staining denuded IVM-oocytes with 10 μM 2′7′ dichlorodihydrofluorescein diacetate. Apoptosis was analyzed by Annexin V (AV) Apoptosis Detection kit and Propidium iodide (PI) signal and oocytes were classified as: Live (AV PI), early apoptotic (AV+ PI), dead non-apoptotic (AV PI+) and necrotic (AV+ PI+). Developmental competence of vitrified/warmed oocytes was assessed by PA (5 min in 5 μM Ionomycin plus 4 h in 2 mM 6-Dimethylaminopurine), and by ICSI fertilization. Presumptive zygotes were in vitro cultured for 8 days in commercial media BO-IVC. Vitrified/warmed oocytes showed higher ROS levels (P < 0.0001), lower live oocytes (44 vs. 66%; P: 0.0025) and higher dead non-apoptotic oocytes (33 vs. 13% P: 0.023) compared to control. No differences were found on normal zygote formation (2 PN) (32 vs. 25%) or blastocyst development (0 vs. 4%) after ICSI fertilization. However, after PA, significant differences were found in cleavage rate (59 vs.78%; P < 0.0343) and blastocyst formation (1 vs. 25%; P < 0.0001). In conclusion, vitrification reduced oocyte competence by increasing dead oocytes and ROS levels.  相似文献   

20.
In vivo and in vitro matured porcine oocytes were fertilized by subzonal sperm injection (SUZI), and their subsequent development in vitro was examined to determine whether ooplasmic incompetence is the major cause of limited developmental ability of in vitro matured/fertilized porcine oocytes (Experiment 1). There was no significant difference in rates of fertilization (61% vs. 70%), monospermy (37% vs. 45%), and male pronuclear formation (77% vs. 61%) between in vivo and in vitro matured oocytes. Blastocyst formation rate was significantly lower for in vitro matured oocytes (11% vs. 42%; P < 0.001). Forty-six percent of in vivo matured oocytes cleaved to the 2-4 cell stage by 24 hr in culture after SUZI, compared with 3% of in vitro matured oocytes (P < 0.01). In experiment 2, in vitro development of in vitro matured oocytes with evenly and unevenly granulated cytoplasm were compared after SUZI to examine whether developmentally competent in vitro matured oocytes can be identified on the basis of morphological appearance. Most of the blastocysts obtained developed from oocytes with unevenly granulated cytoplasm (7/56 vs. 1/45; P > 0.05). Experiment 3 revealed that the proportion of oocytes with evenly granulated cytoplasm was originally low (11%) in the population of oocytes used for in vitro maturation, and it increased approximately 3-fold (36%; P < 0.001) after maturation. These results suggest that ooplasmic incompetence in porcine in vitro matured oocytes is the major cause of their limited developmental competence. Cytoplasmic maturation measured by male pronucleus formation does not directly reflect developmental competence of the oocytes. It was also shown that evenness of granulation of the cytoplasm is not a useful morphological indicator of developmental competence. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号