首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N6-Naphthalenemethyl-2'-methoxybenzamido-beta-NAD+, a derivative of a low micromolar first-generation inhibitor of trypanosomal glyceraldehyde phosphate dehydrogenase (GAPDH), was synthesized, taking advantage of methodology for the selective phosphitylation of nucleosides. The compound was found to be a poor alternate cosubstrate for GAPDH, but an extremely potent inhibitor. Although intended for use in crystallization trials, the analogue presents possibilities for further drug design.  相似文献   

2.
3.
An NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC. 1.2.1.12) has been purified from spinach leaves as a homogeneous protein of 150 000 daltons.Kinetic constants of 2.5·10−4 M and 4 · 10−4 M have been calculated for NAD+ and glyceraldehyde 3-phosphate, respectively.The amino acid composition is characterized by a cysteine content higher than that found in analogous enzymes.On sodium dodecyl sulphate gel electrophoresis, the native enzyme dissociates into two subunits of 37 000 and 14 000 daltons. The two subunits have been isolated in equimolar amounts by gel filtration; end-group analysis shows that alanine is the N-terminal residue of the large subunit, while serine is found at the N-terminus of the small subunit.Comparison of amino acid analyses and peptide maps shows that the two subunits have a different amino acid sequence. These results indicate that the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase, isolated from spinach leaves has an atypical oligomeric structure, the protomer being formed by two different subunits.  相似文献   

4.
Tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus has been crystallized as hexagonal plates, P3121, a = b = 64.6 A?, c = 238.8 A?, with the dimeric molecule (molecular weight, 90,000) occupying two crystallographic asymmetric units (Reid et al., 1973). Three heavy-atom derivatives have been identified and X-ray diffraction measurements have been made to 2.7 Å resolution, using the oscillation method. The three heavy-atom derivatives were methyl mercury (two sites, half occupied, 3 Å apart), uranyl acetate (single fully occupied site) and chloroplatinite PtCl42? (three sites of differing occupancy). The results were used to compute an electron density map at 2.7 Å resolution, which shows the monomer as a unit of about 60 Å × 60 Å × 40 Å. The maximum dimension of the dimer is about 130 Å. Most of the polypeptide chain has been traced uniquely. It includes five α-helices more than 12 Å long and several shorter helices. A six-stranded pleated-sheet structure lies in the centre of each subunit. The catalytic site of the enzyme is believed to be adjacent to the mercury-binding group.  相似文献   

5.
Enzyme protein fluorescence of di-furylacryloyl-glyceraldehyde-3-phosphate dehydrogenase (di-FA-GPDH:lambda max.excitation 290 nm, lambda max.emission 338 nm) is quenched about 28% on saturation with NAD+. Results of fluorometric titration of di-FA-GPDH with NAD+ suggest the presence of two tight and two loose coenzyme binding sites (Kdiss. 0.1 and 6.0 microM, respectively). Initial rates of the NAD(+)-dependent reaction of di-FA-GPDH with arsenate and phosphate and of mono-FA-GPDH with phosphate have been determined at varying coenzyme concentrations. The data suggest that binding of NAD+ at the tight sites does not activate the acyl group for its reaction with the acceptor (phosphate or arsenate). The group transfer reaction is dependent only on NAD+ binding to the loose sites, which carry the acyl group. The large difference in the NAD+ binding affinity to the two types of sites and their different effects on the group transfer reaction impart a sigmoidal shape to the rate versus [NAD+] plots. The sigmoidicity is abolished if the reactive SH groups at the unacylated sites are blocked by carboxymethylation.  相似文献   

6.
D Eby  M E Kirtly 《Biochemistry》1976,15(10):2168-2171
Using NAD analogues as ligands, the structural requirements for negative cooperativity in binding to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase were examined. Although the affinity of nicotinamide hypoxanthine dinucleotide is considerably lower than that of NAD+, it also binds to the enzyme with negative cooperatively. Two pairs of nicotinamide hypoxanthine dinucleotide binding sitess were distinguished, one pair having an affinity for the analogue which is 15 times that of the second pair. Negative cooperativity is also found in the Km values for the analogue. Thus modification of the adenine ring of NAD+ to hypoxanthine does not abolish negative cooperativity in coenzyme binding. Adenosine diphosphoribose binding to the same enzyme shows neither positive nor negative cooperativity, indicating that cooperativity apparently requires an intact nicotinamide ring in the coenzyme structure, under the conditions of these experiments. Occupancy of the nicotinamide subsite of the coenzyme binding site is not necessary for half-of-sites reactivity of alkylating or acylating compounds (Levitzki, A. (1974), J. Mol, Biol. 90, 451-458). However, it can be important in the negative cooperativity in ligand binding, as illustrated by adenosine diphosphoribose which fails to exhibit negative cooperativity. Occupancy of the adenine subsite by adenine is important for stabilization of the enzyme against thermal denaturation. Whether the stabilization is due to an altered conformation of the subunits or stabilization of the preexisting structure of the apoenzyme cannot be determined from these studies. However, nicotinamide hypoxanthine dinucleotide does not contribute to enzyme stability although it serves as a substrate and shows negative cooperativity.  相似文献   

7.
An NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC. 1.2.1.12) has been purified from spinach leaves as a homogeneous protein of 150,000 daltons. Kinetic constants of 2.5 . 10(-4) M and 4 . 10(-4) M have been calculated for NAD+ and glyceraldehyde-3-phosphate, respectively. The amino acid composition is characterized by a cysteine content higher than that found in analogous enzymes. On sodium dodecyl sulphate gel electrophoresis, the native enzyme dissociates into two subunits of 37,000 and 14,000 daltons. The two subunits have been isolated in equimolar amounts by gel filtration; end-group analysis shows that alanine is the N-terminal residue of the large subunit, while serine is found at the N-terminus of the small subunit. Comparison of amino acid analysies and peptide maps shows that the two subunits have a different amino acid sequence. These results indicate that the NAD+-dependent glyceraldehyde-3-phosphate, dehydrogenase, isolated from spinach leaves has an atypical oligomeric structure, the protomer being formed by two different subunits.  相似文献   

8.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

9.
10.
11.
12.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with various activities far from its enzymatic function. Here, we showed that the oxidation of SH-groups of the active site of GAPDH enhanced its binding with total transfer RNA or with total DNA. Both NAD and NADH-the cofactors of GAPDH-inhibited the GAPDH-RNA (DNA) interaction, though NAD was much less effective than NADH in the case of oxidized GAPDH. Oxidation of GAPDH strongly decreased its affinity to NAD but not to NADH. Immobilized tetramers of GAPDH dissociated into dimers during the incubation with total RNA but not DNA. The staining of HeLa cells with monoclonal antibodies specific to dimers, monomers or the denatured form of GAPDH revealed the condensation of non-native forms of GAPDH in the nucleus. The role of oxidation of GAPDH in the regulation of the quaternary structure of the enzyme and in its interaction with nucleic acids is discussed.  相似文献   

13.
To better understand the role of nicotinic acid and nicotinamide in the regulation of the oxidative stress response, we measured the levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PD) mRNA in Jurkat cells treated with these NAD+ precursors. We used a modified nonradioactive Northern blot method and detected the mRNA using 18-mer digoxigenin (DIG)-labeled oligonucleotides as probes. We observed increased levels of the mRNAs for the two enzymes in treated cells. Our findings suggest that the NAD+ precursors may protect against oxidative stress and DNA damage by up-regulating the stress response genes GAPDH and G6PD.  相似文献   

14.
15.
16.
Beta-structure in glyceraldehyde-3-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

17.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

18.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号