首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RAP80, a nuclear protein with two functional ubiquitin-interaction motifs (UIMs) at its N-terminus, plays a critical role in the regulation of estrogen receptor alpha and DNA damage response signaling. A yeast two-hybrid screen identified the SUMO-conjugating enzyme UBC9 as a protein interacting with RAP80. The interaction of RAP80 with UBC9 was confirmed by co-immunoprecipitation and GST pull-down analyses. The region between aa 122-204 was critical for the interaction of RAP80 with UBC9. In addition, we demonstrate that RAP80 is a target for SUMO-1 modification in intact cells. Expression of UBC9 enhanced RAP80 mono-sumoylation and also induced multi-sumoylation of RAP80. In addition to SUMO-1, RAP80 was efficiently conjugated to SUMO-3 but was only a weak substrate for SUMO-2 conjugation. These findings suggest that sumoylation plays a role in the regulation of RAP80 functions.  相似文献   

2.
Recognition and repair of double-stranded DNA breaks (DSB) involves the targeted recruitment of BRCA tumor suppressors to damage foci through binding of both ubiquitin (Ub) and the Ub-like modifier SUMO. RAP80 is a component of the BRCA1 A complex, and plays a key role in the recruitment process through the binding of Lys63-linked poly-Ub chains by tandem Ub interacting motifs (UIM). RAP80 also contains a SUMO interacting motif (SIM) just upstream of the tandem UIMs that has been shown to specifically bind the SUMO-2 isoform. The RAP80 tandem UIMs and SIM function collectively for optimal recruitment of BRCA1 to DSBs, although the molecular basis of this process is not well understood. Using NMR spectroscopy, we demonstrate that the RAP80 SIM binds SUMO-2, and that both specificity and affinity are enhanced through phosphorylation of the canonical CK2 site within the SIM. The affinity increase results from an enhancement of electrostatic interactions between the phosphoserines of RAP80 and the SIM recognition module within SUMO-2. The NMR structure of the SUMO-2·phospho-RAP80 complex reveals that the molecular basis for SUMO-2 specificity is due to isoform-specific sequence differences in electrostatic SIM recognition modules.  相似文献   

3.
4.
RAP80 has a key role in the recruitment of the Abraxas–BRCC36–BRCA1–BARD1 complex to DNA‐damage foci for DNA repair through specific recognition of Lys 63‐linked polyubiquitinated proteins by its tandem ubiquitin‐interacting motifs (UIMs). Here, we report the crystal structure of the RAP80 tandem UIMs (RAP80‐UIM1‐UIM2) in complex with Lys 63‐linked di‐ubiquitin at 2.2 Å resolution. The two UIMs, UIM1 and UIM2, and the α‐helical inter‐UIM region together form a continuous 60 Å‐long α‐helix. UIM1 and UIM2 bind to the proximal and distal ubiquitin moieties, respectively. Both UIM1 and UIM2 of RAP80 recognize an Ile 44‐centered hydrophobic patch on ubiquitin but neither UIM interacts with the Lys 63‐linked isopeptide bond. Our structure suggests that the inter‐UIM region forms a 12 Å‐long α‐helix that ensures that the UIMs are arranged to enable specific binding of Lys 63‐linked di‐ubiquitin. This was confirmed by pull‐down analyses using RAP80‐UIM1‐UIM2 mutants of various length inter‐UIM regions. Further, we show that the Epsin1 tandem UIM, which has an inter‐UIM region similar to that of RAP80‐UIM1‐UIM2, also selectively binds Lys 63‐linked di‐ubiquitin.  相似文献   

5.
MUC1 oncoprotein stabilizes and activates estrogen receptor alpha   总被引:6,自引:0,他引:6  
Wei X  Xu H  Kufe D 《Molecular cell》2006,21(2):295-305
  相似文献   

6.
7.
8.
Cellular levels of estrogen receptor-alpha (ERalpha) protein are regulated primarily by the ubiquitin-proteasome pathway. Dynamic interactions between ERalpha and the protein degradation machinery facilitate the down-regulation process by targeting receptor lysine residues for polyubiquitination. To date, the lysines that control receptor degradation have not been identified. Two receptor lysines, K302 and K303, located in the hinge-region of ERalpha, serve multiple regulatory functions, and we examined whether these might also regulate receptor polyubiquitination, turnover, and receptor-protein interactions. We used ERalpha-negative breast cancer C4-12 cells to generate cells stably expressing wild-type (wt)ERalpha or ERalpha with lysine-to-alanine substitutions at K302 and K303 (ERalpha-AA). In the unliganded state, ERalpha-AA displayed rapid polyubiquitination and enhanced basal turnover, as compared with wtERalpha, due to its elevated association with the ubiquitin ligase carboxy terminus of Hsc70-interacting protein (CHIP) and the proteasome-associated cochaperone Bag1. Treatment of C4-12 cells with either 17beta-estradiol (E2) or the pure antiestrogen ICI 182,780 (ICI) induced rapid degradation of wtERalpha via the ubiquitin-proteasome pathway; however, in the presence of these ligands, ERalpha-AA was less efficiently degraded. Furthermore, ERalpha-AA was resistant to ICI-induced polyubiquitination, suggesting that these lysines are polyubiquitinated in response to the antiestrogen and demonstrate a novel role for these two lysines in the mechanism of action of ICI-induced receptor down-regulation. The reduced stability of ERalpha-AA in the unliganded state and the increased stability of ERalpha-AA in the liganded state were concordant with reporter gene assays demonstrating that ERalpha-AA has lower basal activity but higher E2 inducibility than wtERalpha. These data provide the first evidence that K302/303 protect ERalpha from basal degradation and are necessary for efficient E2- and ICI-induced turnover in breast cancer cells.  相似文献   

9.
10.
11.
The covalent attachment of ubiquitin to proteins is an evolutionarily conserved signal for rapid protein degradation. However, additional cellular functions for ubiquitination are now emerging, including regulation of protein trafficking and endocytosis. For example, recent genetic studies suggested a role for ubiquitination in regulating epsin, a modular endocytic adaptor protein that functions in the assembly of clathrin-coated vesicles; however, biochemical evidence for this notion has been lacking. Epsin consists of an epsin NH(2)-terminal homology (ENTH) domain that promotes the interaction with phospholipids, several AP2 binding sites, two clathrin binding sequences, and several Eps15 homology (EH) domain binding motifs. Interestingly, epsin also possesses several recently described ubiquitin-interacting motifs (UIMs) that have been postulated to bind ubiquitin. Here, we demonstrate that epsin is predominantly monoubiquitinated and resistant to proteasomal degradation. The UIMs are necessary for epsin ubiquitination but are not the site of ubiquitination. Finally, we demonstrate that the isolated UIMs from both epsin and an unrelated monoubiquitinated protein, Eps15, are sufficient to promote ubiquitination of a chimeric glutathione-S-transferase (GST)-UIM fusion protein. Thus, our data suggest that UIMs may serve as a general signal for ubiquitination.  相似文献   

12.
13.
14.
Calmodulin is a selective modulator of estrogen receptors   总被引:5,自引:0,他引:5  
In the search for differences between ERalpha and ERbeta, we analyzed the interaction of both receptors with calmodulin (CaM) and demonstrated that ERalpha but not ERbeta directly interacts with CaM. Using transiently transfected HeLa cells, we examined the effect of the CaM antagonist N-(6-aminohexyl)-5-chloro-naphthalene sulfonilamide hydrochloride (W7) on the transactivation properties of ERalpha and ERbeta in promoters containing either estrogen response elements or activator protein 1 elements. Transactivation by ERalpha was dose-dependently inhibited by W7, whereas that of ERbeta was not inhibited or even activated at low W7 concentrations. In agreement with these results, transactivation of an estrogen response element containing promoter in MCF-7 cells (which express a high ERalpha/ERbeta ratio) was also inhibited by W7. In contrast, transactivation in T47D cells (which express a low ERalpha/ERbeta ratio) was not affected by this CaM antagonist. The sensitivity of MCF-7 cells to W7 was abolished when cells were transfected with increasing amounts of ERbeta, indicating that the sensitivity to CaM antagonists of estrogen-responsive tissues correlates with a high ERalpha/ERbeta ratio. Finally, substitution of lysine residues 302 and 303 of ERalpha for glycine rendered a mutant ERalpha unable to interact with CaM whose transactivation activity became insensitive to W7. Our results indicate that CaM antagonists are selective modulators of ER able to inhibit ERalpha-mediated activity, whereas ERbeta actions were not affected or even potentiated by W7.  相似文献   

15.
16.
The cellular response to DNA damage is essential for maintenance of genomic stability. MDC1 is a key member of the DNA damage response. It is an adaptor protein that binds and recruits proteins to sites of DNA damage, a crucial step for a proper response. MDC1 contains several protein-protein interacting modules, including a tandem BRCT domain that mediates various interactions involving MDC1. Here we demonstrate that MDC1 binds directly to RAP80, which is a DNA damage response protein that recruits BRCA1 to sites of damage. The interaction between MDC1 and RAP80 requires the tandem BRCT domain of MDC1 and the ubiquitin-interacting motifs of RAP80. Moreover, the interaction depends on UBC13, an E2 ubiquitin ligase that catalyzes K63-linked poly-ubiquitin chain formation. The results highly propose that the interaction between MDC1 and RAP80 depends on a ubiquitylation event, which we found to take place on K-1977 of MDC1. This study provides the first evidence that interactions involving MDC1 can be regulated by ubiquitylation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号