共查询到20条相似文献,搜索用时 15 毫秒
1.
Evans DB Rank KB Bhattacharya K Thomsen DR Gurney ME Sharma SK 《The Journal of biological chemistry》2000,275(32):24977-24983
In Alzheimer's disease, hyperphosphorylated tau is an integral part of the neurofibrillary tangles that form within neuronal cell bodies and fails to promote microtubule assembly. Dysregulation of the brain-specific tau protein kinase II is reported to play an important role in the pathogenesis of Alzheimer's disease (Patrick, G. N., Zukerberg, L., Nikolic, M., De La Monte, S., Dikkes, P., and Tsai, L.-H. (1999) Nature 402, 615-622). We report here that in vitro phosphorylation of human tau by human recombinant tau protein kinase II severely inhibits the ability of tau to promote microtubule assembly as monitored by tubulin polymerization. The ultrastructure of tau-mediated polymerized tubulin was visualized by electron microscopy and compared with phosphorylated tau. Consistent with the observed slower kinetics of tubulin polymerization, phosphorylated tau is compromised in its ability to generate microtubules. Moreover, we show that phosphorylation of microtubule-associated tau results in tau's dissociation from the microtubules and tubulin depolymerization. Mutational studies with human tau indicate that phosphorylation by tau protein kinase II at serine 396 and serine 404 is primarily responsible for the functional loss of tau-mediated tubulin polymerization. These in vitro results suggest a possible role for tau protein kinase II-mediated tau phosphorylation in initiating the destabilization of microtubules. 相似文献
2.
The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains 总被引:2,自引:0,他引:2 下载免费PDF全文
The differentiation of neurons and the outgrowth of neurites depends on microtubule-associated proteins such as tau protein. To study this process, we have used the model of Sf9 cells, which allows efficient transfection with microtubule-associated proteins (via baculovirus vectors) and observation of the resulting neurite-like extensions. We compared the phosphorylation of tau23 (the embryonic form of human tau) with mutants in which critical phosphorylation sites were deleted by mutating Ser or Thr residues into Ala. One can broadly distinguish two types of sites, the KXGS motifs in the repeats (which regulate the affinity of tau to microtubules) and the SP or TP motifs in the domains flanking the repeats (which contain epitopes for antibodies diagnostic of Alzheimer's disease). Here we report that both types of sites can be phosphorylated by endogenous kinases of Sf9 cells, and that the phosphorylation pattern of the transfected tau is very similar to that of neurons, showing that Sf9 cells can be regarded as an approximate model for the neuronal balance between kinases and phosphatases. We show that mutations in the repeat domain and in the flanking domains have opposite effects. Mutations of KXGS motifs in the repeats (Ser262, 324, and 356) strongly inhibit the outgrowth of cell extensions induced by tau, even though this type of phosphorylation accounts for only a minor fraction of the total phosphate. This argues that the temporary detachment of tau from microtubules (by phosphorylation at KXGS motifs) is a necessary condition for establishing cell polarity at a critical point in space or time. Conversely, the phosphorylation at SP or TP motifs represents the majority of phosphate (>80%); mutations in these motifs cause an increase in cell extensions, indicating that this type of phosphorylation retards the differentiation of the cells. 相似文献
3.
Tau phosphorylation plays a crucial role in microtubule stabilization and in Alzheimer's disease. To characterize the molecular mechanisms of tau binding on microtubules, we synthesized the peptide R1 (QTAPVPMPDLKNVKSKIGSTENLKHQPGGGKVQI), reproducing the first tau microtubule binding motif. We thermodynamically characterized the molecular mechanism of tubulin assembly with R1 in vitro, and measured, for the first time, the binding parameters of R1 on both growing and taxol-stabilized microtubules. In addition, we obtained similar binding parameters with R1 phosphorylated on Ser262. These data suggest that the consequences of Ser262 phosphorylation on tau binding to microtubules and on tubulin assembly are due to large intramolecular rearrangements of the tau protein. 相似文献
4.
Y Zick G Grunberger J M Podskalny V Moncada S I Taylor P Gorden J Roth 《Biochemical and biophysical research communications》1983,116(3):1129-1135
Using lectin affinity-purified receptor preparations from human hepatoma cells, insulin (10(-7)M) specifically stimulated phosphorylation of the 95,000 dalton (beta) subunit of its own receptor. Phospho-amino acid analysis of the receptor subunit revealed that insulin increased at least 2.5-fold the content of phosphoserine and of phosphotyrosine. In intact cells, the major effect of insulin is to increase the phosphoserine content of its receptor. These findings are the first demonstration of an insulin-stimulated serine kinase in a cell-free system. 相似文献
5.
6.
VCP/p97 is a multifunctional AAA+-ATPase involved in vesicle fusion, proteasomal degradation, and autophagy. Reported dysfunctions of these processes in Alzheimer disease (AD), along with the linkage of VCP/p97 to inclusion body myopathy with Paget's disease and frontotemporal dementia (IBMPFD) led us to examine the possible linkage of VCP to the AD-relevant protein, tau. VCP levels were reduced in AD brains, but not in the cerebral cortex of an AD mouse model, suggesting that VCP reduction occurs upstream of tau pathology. Genetic reduction of VCP in a primary neuronal model led to increases in the levels of tau phosphorylated at Ser(262/356), indicating that VCP may be involved in regulating post-translational processing of tau in AD, demonstrating a possible functional linkage between tau and VCP. 相似文献
7.
R Vulliet S M Halloran R K Braun A J Smith G Lee 《The Journal of biological chemistry》1992,267(31):22570-22574
The primary sequence of the microtubule-associated protein tau contains multiple repeats of the sequence -X-Ser/Thr-Pro-X-, the consensus sequence for the proline-directed protein kinase (p34cdc2/p58cyclin A). When phosphorylated by proline-directed protein kinase in vitro, tau was found to incorporate up to 4.4 mol of phosphate/mol of protein. Isoelectric focusing of the tryptic phosphopeptides demonstrated the presence of five distinct peptides with pI values of approximately 6.9, 6.5, 5.6-5.9, 4.7, and 3.6. Mapping of the tryptic phosphopeptides by high performance liquid chromatography techniques demonstrated three distinct peaks. Data from gas phase sequencing, amino acid analysis, and phosphoamino acid analysis suggest that proline-directed protein kinase phosphorylates tau at four sites. Each site demonstrates the presence of a proline residue on the carboxyl-terminal side of the phosphorylated residue. Two phosphorylation sites are located adjacent to the three-repeat microtubule-binding domain that has been found to be required for the in vivo co-localization of tau protein to microtubules. Two other putative phosphorylation sites are located within the identified epitope of the monoclonal antibody Tau-1. Phosphorylation of these sites altered the immunoreactivity of tau to Tau-1 antibody. Since the neuronal microtubule-associated protein tau is multiply phosphorylated in Alzheimer's disease, and Tau-1 immunoreactivity is similarly reduced in neurofibrillary tangles and enhanced after dephosphorylation, phosphorylation at one or more of these sites may correlate with abnormally phosphorylated sites in tau protein in Alzheimer's disease. 相似文献
8.
Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues 总被引:15,自引:0,他引:15
Numazaki M Tominaga T Toyooka H Tominaga M 《The Journal of biological chemistry》2002,277(16):13375-13378
The capsaicin receptor, VR1, is a sensory neuron-specific ion channel that serves as a polymodal detector of pain-producing chemical and physical stimuli. It has been reported that ATP, one of the inflammatory mediators, potentiates the VR1 currents evoked by capsaicin or protons and reduces the temperature threshold for activation of VR1 through metabotropic P2Y(1) receptors in a protein Kinase C (PKC)-dependent pathway, suggesting the phosphorylation of VR1 by PKC. In this study, direct phosphorylation of VR1 upon application of phorbol 12-myristate 13-acetate (PMA) was proven biochemically in cells expressing VR1. An in vitro kinase assay using glutathione S-transferase fusion proteins with cytoplasmic segments of VR1 showed that both the first intracellular loop and carboxyl terminus of VR1 were phosphorylated by PKCepsilon. Patch clamp analysis of the point mutants where Ser or Thr residues were replaced with Ala in the total 16 putative phosphorylation sites showed that two Ser residues, Ser(502) and Ser(800) were involved in the potentiation of the capsaicin-evoked currents by either PMA or ATP. In the cells expressing S502A/S800A double mutant, the temperature threshold for activation was not reduced upon PMA treatment. The two sites would be promising targets for the development of substance modulating VR1 function, thereby reducing pain. 相似文献
9.
In Parkinson disease (PD) brain, a progressive loss of dopaminergic neurons leads to dopamine depletion in the striatum and reduced motor function. Lewy bodies, the characteristic neuropathological lesions found in the brain of PD patients, are composed mainly of α-synuclein protein. Three point mutations in the α-synuclein gene are associated with familial PD. In addition, genome-wide association studies indicate that α-synuclein and Tau protein synergistically increase disease susceptibility in the human population. To determine the mechanism by which α-synuclein and Tau act together, we have used PD-causing neurotoxin MPTP and pathogenic α-synuclein mutants A30P, E46K, and A53T as models. We found that exposure of human neuroblastoma M17 cells to MPTP enhances the intracellular α-synuclein protein level, stimulates Tau protein phosphorylation at Ser(262), and induces apoptosis. In mouse brain, ablation of α-synuclein function significantly suppresses Tau phosphorylation at Ser(262). In vitro, α-synuclein binds to phosphorylated Ser(214) of Tau and stimulates PKA-catalyzed Tau phosphorylation at Ser(262). PD-associated α-synuclein mutations increase α-synuclein binding to Tau and stimulate Tau phosphorylation at Ser(262). In HEK-293 cells, α-synuclein and its all PD-associated mutants destabilize the microtubule cytoskeleton in a similar extent. In contrast, when co-expressed with Tau, these PD-associated mutants destabilize microtubules with significantly higher potency than WT. Our results demonstrate that α-synuclein is an in vivo regulator of Tau protein phosphorylation at Ser(262) and suggest that PD-associated risk factors such as environmental toxins and α-synuclein mutations promote Tau phosphorylation at Ser(262), causing microtubule instability, which leads to loss of dopaminergic neurons in PD brain. 相似文献
10.
T J Singh 《Biochemical and biophysical research communications》1990,171(1):75-83
A Mn2(+)-dependent serine/threonine protein kinase from rat liver membranes copurifies with the insulin receptor (IR) on wheat germ agglutinin (WGA)-sepharose. The kinase is present in a nonactivated form in membranes but can be activated 20-fold by phosphorylating the WGA-sepharose fraction with casein kinase-1 (CK-1), casein kinase-2 (CK-2), or casein kinase-3 (CK-3). The activated kinase can use IR beta-subunit, myelin basic protein, and histones as substrates. Activation of the kinase seems to proceed by two or more steps. Sodium vanadate and Mn2+ are required in reaction mixtures for activation to be observed, whereas the tyrosine kinase-specific substrate, poly (glu, tyr), completely inhibits activation. These observations suggest that, in addition to serine/threonine phosphorylation by one of the casein kinases, activation of the Mn2(+)-dependent protein kinase also requires tyrosine phosphorylation. Such phosphorylation may be catalyzed by the IR tyrosine kinase. 相似文献
11.
Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. 总被引:17,自引:0,他引:17
K Ishiguro M Takamatsu K Tomizawa A Omori M Takahashi M Arioka T Uchida K Imahori 《The Journal of biological chemistry》1992,267(15):10897-10901
From bovine brain microtubules we purified tau protein kinase I (TPKI, Mr 45,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tau protein kinase II (TPKII) whose activity was attributed to a 30-kDa protein on SDS-PAGE by affinity-labeling using an ATP analog. Both kinases were activated by tubulin. TPKII, but not TPKI, phosphorylated tau fragment peptides previously used for detection of a Ser/ThrPro kinase activity. Therefore, TPKII was considered to be the Ser/ThrPro kinase. TPKI was more effective than TPKII for producing the decrease of tau-1 immunoreactivity and mobility shift of tau on SDS-PAGE. Moreover, TPKI, but not TPKII nor other well-known protein kinases, generated an epitope present on paired helical filaments. These findings suggested that tau phosphorylated by TPKI resembled A-68, a component of paired helical filaments. 相似文献
12.
This study set out to search for a link between overproduction of Abeta and p70S6 kinase (p70S6K) phosphorylation/activation. Results showed that levels of p-p70S6K at T421/S424 and T389 are significantly increased in mouse N2a neuroblastoma cells carrying human APP with Swedish mutation (APPswe), and in transgenic APPswe/PS1 (A246E) mice as compared with respective controls, corresponding to the increase of tau phosphorylation at S262. This parallel increase in p70S6K activation and tau phosphorylation could be demonstrated by treating wild-type N2a cells with Abeta25-35. Our results suggest that the Abeta deposition in senile plaques in Alzheimer disease brains might be a primary event that activates p70S6K and phosphorylates tau at S262, resulting in microtubule disruption. 相似文献
13.
van Tiel CM Westerman J Paasman MA Hoebens MM Wirtz KW Snoek GT 《The Journal of biological chemistry》2002,277(25):22447-22452
Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism. 相似文献
14.
V Adler A Polotskaya F Wagner A S Kraft 《The Journal of biological chemistry》1992,267(24):17001-17005
The addition of phorbol esters to U937 leukemic cells stimulates the phosphorylation of c-Jun on serines 63 and 73. To isolate the protein kinase which stimulates this phosphorylation, we have used heparin-Sepharose chromatography followed by affinity chromatography over glutathione-Sepharose beads bound with a fusion protein of glutathione S-transferase and amino acids 5-89 of c-Jun (GST-c-Jun). Using this procedure we purify a 67-kDa protein which is capable of phosphorylating GST-c-Jun as well as the complete c-Jun protein. By making mutations in serines 63 and 73 and then creating a fusion protein with GST (GST-c-Jun mut), we demonstrate that this protein kinase specifically phosphorylates these sites in the c-Jun amino terminus. Treatment of purified c-Jun amino-terminal protein kinase (cJAT-PK) with phosphatase 2A inhibits its ability to phosphorylate GST-c-Jun. This inactivated enzyme can be reactivated by phosphorylation with protein kinase C (PKC), although PKC is not capable of phosphorylating the GST-c-Jun substrate. Because v-Jun cannot be phosphorylated in vivo, we compared the ability of cJAT-PK to bind to GST-v-Jun or GST-c-Jun mut. The cJAT-PK bound 50-fold better to GST-c-Jun mut than GST-v-Jun suggesting that the delta domain which is missing in v-Jun plays a role in binding the cJAT-PK. These results suggest that there is a protein kinase cascade mediated by protein phosphatases and PKC which regulates c-Jun phosphorylation. 相似文献
15.
In mammalian brain, tau, glycogen synthase kinase 3beta (GSK3beta), and 14-3-3, a phosphoserine-binding protein, are parts of a multiprotein tau phosphorylation complex. Within the complex, 14-3-3 simultaneously binds to tau and GSK3beta (Agarwal-Mawal, A., Qureshi, H. Y., Cafferty, P. W., Yuan, Z., Han, D., Lin, R., and Paudel, H. K. (2003) J. Biol. Chem. 278, 12722-12728). The molecular mechanism by which 14-3-3 connects GSK3beta to tau within the complex is not clear. In this study, we find that GSK3beta within the tau phosphorylation complex is phosphorylated on Ser(9). From extracts of rat brain and rat primary cultured neurons, Ser(9)-phosphorylated GSK3beta precipitates with glutathione-agarose beads coated with glutathione S-transferase-14-3-3. Similarly, from rat brain extract, Ser(9)-phosphorylated GSK3beta co-immunoprecipitates with tau. In vitro, 14-3-3 binds to GSK3beta only when the kinase is phosphorylated on Ser(9). In transfected HEK-293 cells, 14-3-3 binds to Ser(9)-phosphorylated GSK3beta and does not bind to GSK3beta (S9A). Tau, on the other hand, binds to both GSK3beta (WT) and GSK3beta (S9A). Moreover, 14-3-3 enhances the binding of tau with Ser(9)-phosphorylated GSK3beta by approximately 3-fold but not with GSK3beta (S9A). Similarly, 14-3-3 stimulates phosphorylation of tau by Ser(9)-phosphorylated GSK3beta but not by GSK3beta (S9A). In transfected HEK-293 cells, Ser(9) phosphorylation suppresses GSK3beta-catalyzed tau phosphorylation in the absence of 14-3-3. In the presence of 14-3-3, however, Ser(9)-phosphorylated GSK3beta remains active and phosphorylates tau. Our data indicate that within the tau phosphorylation complex, 14-3-3 connects Ser(9)-phosphorylated GSK3beta to tau and Ser(9)-phosphorylated GSK3beta phosphorylates tau. 相似文献
16.
Protein kinase C phosphorylation of desmin at four serine residues within the non-alpha-helical head domain 总被引:12,自引:0,他引:12
S Kitamura S Ando M Shibata K Tanabe C Sato M Inagaki 《The Journal of biological chemistry》1989,264(10):5674-5678
We reported that phosphorylation by either cAMP-dependent protein kinase or protein kinase C (Ca2+/phospholipid-dependent enzyme) in vitro induces disassembly of the desmin filaments (Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., and Sato, C. (1988) J. Biol. Chem. 263, 5970-5978). For this subunit protein, Ser-29, Ser-35, and Ser-50 within the non-alpha-helical head domain were shown to be the sites of phosphorylation for cAMP-dependent protein kinase (Geisler, N., and Weber, K. (1988) EMBO J. 7, 15-20). In the present work, we identified the sites of desmin phosphorylated in vitro by other protein kinase which affects the filament structure. The protein kinase C-phosphorylated desmin was hydrolyzed with trypsin, and the phosphorylated peptides were isolated by reverse-phase chromatography. Sequential analysis of the purified phosphopeptides, together with the known primary sequence, revealed that Ser-12, Ser-29, Ser-38, and Ser-56 were phosphorylated by protein kinase C. All four sites are located within the non-alpha-helical head domain of desmin. Ser-12, Ser-38, and Ser-56, specifically phosphorylated by protein kinase C, have arginine residues at the carboxyl-terminal side (Arg-14, Arg-42, and Arg-59, respectively). Ser-29 phosphorylated by both protein kinase C and cAMP-dependent protein kinase has arginine residues at the amino and carboxyl termini (Arg-27 and Arg-33). These findings support the view that the head domain-specific phosphorylation strongly influences desmin filament structure; however, each protein kinase differed with regard to site recognition on this domain. 相似文献
17.
J Liu Y Wu G Z Ma D Lu L Haataja N Heisterkamp J Groffen R B Arlinghaus 《Molecular and cellular biology》1996,16(3):998-1005
The first exon of the BCR gene encodes a new serine/threonine protein kinase. Abnormal fusion of the BCR and ABL genes, resulting from the formation of the Philadelphia chromosome (Ph), is the hallmark of Ph-positive leukemia. We have previously demonstrated that the Bcr protein is tyrosine phosphorylated within first-exon sequences by the Bcr-Abl oncoprotein. Here we report that in addition to tyrose 177 (Y-177), Y-360 and Y283 are phosphorylated in Bcr-Abl proteins in vitro. Moreover, Bcr tyrosine 360 is phosphorylated in vivo within both Bcr-Abl and Bcr. Bcr mutant Y177F had a greatly reduced ability to transphosphorylate casein and histone H1, whereas Bcr mutants Y177F and Y283F had wild-type activities. In contrast, the Y360F mutation had little effect on Bcr's autophosphorylation activity. Tyrosine-phosphorylated Bcr, phosphorylated in vitro by Bcr-Abl, was greatly inhibited in its serine/threonine kinase activity, impairing both auto- and transkinase activities of Bcr. Similarly, the isolation of Bcr from cells expressing Bcr-Abl under conditions that preserve phosphotyrosine residues also reduced Bcr's kinase activity. These results indicate that tyrosine 360 of Bcr is critical for the transphosphorylation activity of Bcr and that in Ph-positive leukemia, Bcr serine/threonine kinase activity is seriously impaired. 相似文献
18.
Heparin binds to Leishmania donovani promastigotes and inhibits protein phosphorylation. 总被引:2,自引:0,他引:2 下载免费PDF全文
We show that promastigotes of Leishmania donovani, the causative agent of visceral leishmaniasis (kala-azar), possess heparin receptors on their surface. From a linear Scatchard plot of the binding data obtained using [3H]heparin and viable promastigotes, one derives a binding constant of 4.7 x 10(-7) M and an estimate of 860,000 receptors per parasite. The [3H]heparin bound to parasites could not be displaced by hyaluronic acid or by three other glycosaminoglycans (dermatan sulphate, chondroitin 4-sulphate and chondroitin 6-sulphate). It was demonstrated that exponential phase promastigotes growing in medium 199 supplemented with fetal bovine serum incorporate 35SO4 into a cell-associated macromolecule that has the properties of heparin proteoglycan. Heparin inhibits the activity of the cell-surface histone-protein kinase; incubation of viable promastigotes with [gamma-32P]ATP and MgCl2 (10 mM) in the absence and presence of heparin (0.01-0.5 mg/ml) for 10 min, followed by analysis by SDS/polyacrylamide-gel electrophoresis and autoradiography, revealed that the phosphorylation of 12 or 13 parasite proteins was inhibited by the glycosaminoglycan. These data suggest that heparin may play a role in the host-parasite relationship. 相似文献
19.
The estrogen, 17beta-estradiol, stimulated a profound increase in phosphotyrosine immunostaining of proteins that localized along the site of attachment in avian osteoclasts within 1 min of treatment. By 10 min, this rapidly occurring event had returned to basal levels. Pretreatment with 1 microM herbimycin A, a tyrosine kinase inhibitor, prevented the response. Immunoblotting revealed that Src kinase was one of the phosphorylated intermediates. Src kinase also appeared to translocate to the periphery of the cells during the 1 min 17beta-estradiol treatment and became dispersed by 10 min. Src kinase activity measurements indicated an increase in phosphotransferase activity after the 1 min estradiol treatment; this effect diminished with longer exposures to estrogen. Pretreatment of osteoclasts with 1 microg/ml cytochalasin B, an inhibitor of actin polymerization, delayed the appearance of increased phosphotyrosine immunostaining at attachment sites, possibly through inhibition of Src kinase translocation. These findings demonstrate that estrogen stimulates rapid tyrosine phosphorylation in osteoclasts, a process that involves activation and translocation of Src kinase to the plasma membrane. 相似文献
20.
Xiang B Yu GH Guo J Chen L Hu W Pei G Ma L 《The Journal of biological chemistry》2001,276(7):4709-4716
The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR) containing six Ser/Thr residues abolished both DPDPE- and phorbol 12-myristate 13-acetate (PMA)-induced DOR phosphorylation. The phosphorylation levels of DOR mutants T352A, T353A, and T358A/T361A/S363S were comparable to that of the wild-type DOR, whereas S344G substitution blocked PMA-induced receptor phosphorylation, indicating that PKC-mediated phosphorylation occurs at Ser-344. PKC-mediated Ser-344 phosphorylation was also induced by activation of G(q)-coupled alpha(1A)-adrenergic receptor or increase in intracellular Ca(2+) concentration. Activation of PKC by PMA, alpha(1A)-adrenergic receptor agonist, and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism. Further study demonstrated that agonist-dependent G protein-coupled receptor kinase (GRK) phosphorylation sites in DOR are not targets of PKC. Agonist-dependent, GRK-mediated receptor phosphorylation and agonist-independent, PKC-mediated DOR phosphorylation were additive, but agonist-induced receptor phosphorylation could inhibit PKC-catalyzed heterologous DOR phosphorylation and subsequent internalization. These data demonstrate that the responsiveness of opioid receptor is regulated by both PKC and GRK through agonist-dependent and agonist-independent mechanisms and PKC-mediated receptor phosphorylation is an important molecular mechanism of heterologous regulation of opioid receptor functions. 相似文献