首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540 mol C L–1). The highly colored nature of the DOC in these lakes suggests it is mostly of terrestrial origin. Hypolimnetic methane accumulation was positively correlated with epilimnetic DOC concentration (Spearman rank correlation = 0.67; p < 0.01), an indicator of allochthonous DOC inputs, but not with photic zone chlorophyll a concentration (Spearman rank correlation = 0.30; p = 0.22). Hypolimnetic DOC concentrations declined in 19 of 21 lakes during the stratified period at rates that ranged from 0.06 to 53.9 mmol m–2 d–1. The hypolimnetic accumulation of DIC + CH4 was positively correlated with, and, in most cases of comparable magnitude to, this DOC decline suggesting that DOC was an important substrate for hypolimnetic metabolism. The percentage of surface irradiance reaching the thermocline was lower in high DOC lakes (0.3%) than in low DOC lakes (6%), reducing hypolimnetic photosynthesis (as measured by the depth and magnitude of the deep dissolved oxygen maxima) in the high DOC lakes. In June, the hypolimnia of lakes with < 400 mol L–1 DOC had high concentrations of dissolved oxygen and no CH4, while the hypolimnia of lakes with DOC > 800 mol L–1 were completely anoxic and often had high CH4 concentrations. Thus, DOC affects hypolimnetic metabolism via multiple pathways: DOC was significant in supporting hypolimnetic metabolism; and at high concentrations depressed photosynthesis (and therefore oxygen production and DIC consumption) in the hypolimnion.  相似文献   

2.
The effect of glycine and strychnine on Mg2+-ATPase from the microsomal fraction of the bream (Abramis bramaL.) brain was studied. The glycine in the concentration range 10–7–10–4M activates the enzyme. The effect of glycine on Mg2+-ATPase is obviated by 100 M strychnine. The strychnine in the concentration range 5–90 M activates the basal Mg2+-ATPase but decreases the effect of the enzyme activation by 10–4M glycine. The effect of Clon Mg2+-ATPase depends on the substrate concentration (Mg2+-ATP) and is not observed in the presence of 100 M strychnine. A receptor-dependent pathway of glycine and strychnine action on Cl-activated Mg2+-ATPase from bream brain microsomes is proposed.  相似文献   

3.
A comparison has been made of cyclopropene (CP), 1-methylcyclopropene (1-MCP), and 3,3-dimethyl-cyclopropene (3,3-DMCP) in their ability to protect plants against ethylene. In bananas, both CP and 1-MCP are effective around 0.5 nL L–1, and 3,3-DMCP was effective at 1 L L–1. Bananas treated with CP and 1-MCP again become sensitive to ethylene at 12 days and those treated with 3,3-DMCP at 7 days. Mature green tomatoes are protected by 5–7 nL L–1 of 1-MPC for 8 days at 25°C and tomatoes treated with 3,3-DMCP at 5–10 L L–1 are protected for 5 days. Carnation flowers are protected with CP or 1-MCP after exposure to 0.5 nL L–1 for 24 hours and by 1 L L–1 of 3,3-DMCP. The display life of Campanula flowers is increased from 3.3 to 5.4 days by 10 L L–1 of 3,3-DMCP and to 9 days by 20 nL L–1 of 1-MCP. Ethylene inhibition of pea seedlings is reduced by treatment with 1-MCP at 10 L L–1 of ethylene but as ethylene is increased to 3000 L L–1 growth inhibition increases. 3,3-DMCP treatment causes very little reduction of the ethylene effect even at very low concentrations.  相似文献   

4.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

5.
Jia  Yinsuo  Gray  V.M. 《Photosynthetica》2003,41(4):605-610
We determined for Vicia faba L the influence of nitrogen uptake and accumulation on the values of photon saturated net photosynthetic rate (P Nmax), quantum yield efficiency (), intercellular CO2 concentration (C i), and carboxylation efficiency (C e). As leaf nitrogen content (NL) increased, the converged onto a maximum asymptotic value of 0.0664±0.0049 mol(CO2) mol(quantum)–1. Also, as NL increased the C i value fell to an asymptotic minimum of 115.80±1.59 mol mol–1, and C e converged onto a maximum asymptotic value of 1.645±0.054 mol(CO2) m–2 s–1 Pa–1 and declined to zero at a NL-intercept equal to 0.596±0.096 g(N) m–2. fell to zero for an NL-intercept of 0.660±0.052 g(N) m–2. As NL increased, the value of P Nmax converged onto a maximum asymptotic value of 33.400±2.563 mol(CO2) m–2 s–1. P N fell to zero for an NL-intercept of 0.710±0.035 g(N) m–2. Under variable daily meteorological conditions the values for NL, specific leaf area (L), root mass fraction (Rf), P Nmax, and remained constant for a given N supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. L increased with increasing N supply or with increasing NL.  相似文献   

6.
Cell volume distribution in Chlorella vulgaris cultures coming out of senescence was measured by flow cytometry every 6 h for 114 h in a full-factorial experiment with initial nitrate (420–4200 g NO3-N l–1), phosphate (9–186 g PO4-P l–1), and continuous light (50–330 E m–2 s–1) as treatments. The maxima in median and median absolute deviation (MAD) of cell volume were achieved within 6 h of each other and their timing was not affected by any treatment. Population specific growth rate during the first 66 h calculated from volume distribution changes was significantly affected by light treatment only (p=0.002).Revisions requested 4 November 2004; Revisions received 17 January 2005  相似文献   

7.
Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid productivities from chemostat cultures of an isolate of Isochrysis galbana have been studied. The productivities reached in the interval of dilution rates between 0.0295 h–1 and 0.0355 h–1 were 1.5mg·1–1·h–1 for lipids, 300 g·1–1·h–1 for EPA and 130g1·1–1·h–1 for DHA. Furthermore, light attenuation by mutual shading, and agitation speed influences on growth and fatty acid composition were analysed. A model relating steady-state dilution rates to internal average light intensity has been proposed, the parameter values of which obtained by non-linear regression were: maximum specific growth rate (max)=0.0426 h–1; the affinity of cells to light (Ik) = 10.92 W·m–2; the exponent (n) = 5.13; regression coefficient (r 2)=0.9999. Correspondence to: E. Molina Grima  相似文献   

8.
Bioavailable N and P release rates by juveniles and adults of three Daphnia taxa (D. hyalina, D. galeata and its interspecific hybrids D. hyalina × galeata) were measured to assess the effect of weight and interspecific differences on these rates in Daphnia. Immobilized Scenedesmus obliquus cells were used to estimate the release rates. The specific release rate of N varied between 5.19–5.71 g N mg C-1 h-1 for juveniles and 3.00–3.42 g N mg C-1 h-1 for adults. P excretion rate ranged between 1.93–2.37 g P mg C-1 h-1 for juveniles and 1.00–1.24 g P mg C-1 h-1 for adults. Our results show that the taxonomic affiliation of Daphnia individuals did not affect their N and P release rates.  相似文献   

9.
The dinoflagellate Alexandrium tamarense CI01 wasgrown in three types of cultures: batch culture, semi-continuous culture andtemporary culture, to investigate the effects of different culture methods oncell growth and the productivity of C2 toxin (C2, a paralytic shellfish toxin).In the batch cultures, cells grew in three phases: a short lag phase, anexponential phase with a specific growth rate () of 0.78day–1 and a relatively long stationary phase. Themaximum toxin productivity was 1.2 mol L–1 or77 fmol cell–1 in 9 days. In the semi-continuouscultures, cells grewin response to the dilution cycles, with values being 0.64, 0.32 and 0.35day–1 for one-day, two-day and three-day cycles,respectively. The toxin yield was about one half of that of the batch cultures.A "temporary" culture method was used to maintain the metabolically activecellsremoved from the semi-continuous cultures, in a nutrient-depleted condition, toachieve a high toxin productivity of 1.0 molL–1 in 4 days. Thus,the semi-continuous culture method provided an efficient means to generateamounts of metabolically active algal cells. The temporary culture offered aneffective way to produce C2. The highest yields of C2 were obtained in3–4days when the temporary cultures were aerated.  相似文献   

10.
The influence of copper (0–32 M) and iron (0–108 M) on growth and astaxanthin production by Phaffia rhodozyma was studied. Copper below 3.2 M increased the astaxanthin content of the cells (from 220 to 287 g g–1) but at the expense of a slightly decreased growth (from 11.3 to 10.2 mg ml–1). In contrast, iron below 1 M decreased both the growth and astaxanthin content of the cells. Using copper limitation instead of toxic respiratory inhibitors to improve astaxanthin production has obvious advantages from the product quality, environmental and process operation points of view.  相似文献   

11.
Aluminum geochemistry in peatland waters   总被引:4,自引:4,他引:0  
The chemical speciation of aluminum was examined in surface water samples from Sphagnum peatlands in north-central Minnesota, from peatlands along the Canadian east coast, and from bogs in the Pennine Mountain area of England. In highly organic ([DOC] 50 mg L–1 ), low pH waters, 80–90% of total dissolved Al was complexed with organic matter (OM), while in waters with low DOC ([DOC] 5 mg L–1) 54–86% of total dissolved Al existed as Al+3 or other inorganic Al species. Batch titrations of OM with Al revealed a high Al binding capacity, 1.4–2.8 mol (mg DOC)–1, that generally was unsaturated with Al. Titrations of OM with Al in conjunction with a continuous distribution model were used to determine Al-OM conditional stability constants. Binding capacity (mol Al (mg DOC)–1) and strength (formation constant) increased from pH 3 to 5 but decreased above pH 5 due to formation of AI-hydroxy species including A1(OH)3 (s). The high binding capacity of OM in bog waters facilitates metal mobility, especially in low pH (< 5) wetlands where metal solubility is high and OM concentrations are highest. Results showed that the relative degree of organic matter saturation with metal ions was important in modeling AI speciation in bog waters.  相似文献   

12.
The effect of medium composition on the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation has been studied. Four types of mycelial pellets were obtained under the conditions used and may be classified as (a) frayed and loose with 0.1–0.5 mm diameter (b) compact with 0.1–0.5 mm diameter (c) loose with 0.5–2.0 mm diameter and (d) compact with 0.5–2.0 mm diameter. Their respective maximum specific rates of formation and yields of itaconic acid, based on 100 g sucrose supplied, were (a) 1.25 mol mg–1h–1 and 55–59 g, (b) 0.27–0.43 mol mg–1 h–1 and 26–38 g, (c) 0.75–0.90 mol mg–1 h–1 and 45–51 g and (d) 0.12 mol mg–1 h–1 and 10 g. The presence of Ca2+, Zn2+ and Fe2+ in the basal medium at concentrations of 23.3 mg/100 ml, 0.01 mg/100 ml and 0.006 mg/100 ml respectively were found to be adequate and crucial in obtaining the desired outgrowth for both high production rates and consistent yields of itaconic acid. The further addition of either commercial plaster of Paris or analytical-reagent-grade CaSO4, especially when activated by heating to 530°C and present in excess of solubility, results in small and frayed pellets, which lead to itaconic acid yields of 55–59 g acid/100 g sugar supplied.  相似文献   

13.
The long term shear effects on a hybridoma cell line were studied by the simulation of a hollow fiber perfusion system. Various mechanical/environmental stress conditions were applied and steady state concentrations of live, dead and lysed cells were measured or calculated in a continuous culture. From mathematical modeling, it is shown that inclusion of a lysed cell index (LCI) renders a better fit to the material balance equation at steady state. The specific cell death rate increased with increasing shear force as expected only when the LCI was included. Without the inclusion of the LCI, the calculated specific cell growth rates are about 25–60% of the value when included. The results reported may lend some insight to design improvements since most perfusion devices add shear stresses to the cells in the reactor.List of Symbols b ml/hr continuous culture flow rate - D hr–1 dilution rate (b/V) - m g glucose/109 cells/hr specific maintenance coefficient - S 0 g/l feed substrate concentration - S g/l reactor substrate concentration - t hr time - V ml reactor volume - X + cells/ml live cell concentration - X cells/ml dead cell concentration - X 0 cells/ml lysed cell concentration - Y x/s 109 cells/g glucose cell/substrate yield coefficient - hr–1 specific growth rate - hr–1 specific death rate - hr–1 specific lysis rate - hr–1 specific lysis rate for simultaneous death and lysis  相似文献   

14.
The mineralization of organic carbon to CH4 and CO2 inSphagnum-derived peat from Big Run Bog, West Virginia, was measured at 4 times in the year (February, May, September, and November) using anaerobic, peat-slurry incubations. Rates of both CH4 production and CO2 production changed seasonally in surface peat (0–25 cm depth), but were the same on each collection date in deep peat (30–45 cm depth). Methane production in surface peat ranged from 0.2 to 18.8 mol mol(C)–1 hr–1 (or 0.07 to 10.4 g(CH4) g–1 hr–1) between the February and September collections, respectively, and was approximately 1 mol mol(C)–1 hr–1 in deep peat. Carbon dioxide production in surface peat ranged from 3.2 to 20 mol mol(C)–1 hr–1 (or 4.8 to 30.3 g(CO2) g–1 hr–1) between the February and September collections, respectively, and was about 4 mol mol(C)–1 hr–1 in deep peat. In surface peat, temperature the master variable controlling the seasonal pattern in CO2 production, but the rate of CH4 production still had the lowest values in the February collection even when the peat was incubated at 19°C. The addition of glucose, acetate, and H2 to the peat-slurry did not stimulate CH4 production in surface peat, indicating that CH4 production in the winter was limited by factors other than glucose degradation products. The low rate of carbon mineralization in deep peat was due, in part, to poor chemical quality of the peat, because adding glucose and hydrogen directly stimulated CH4 production, and CO2 production to a lesser extent. Acetate was utilized in the peat by methanogens, but became a toxin at low pH values. The addition of SO4 2– to the peat-slurry inhibited CH4 production in surface peat, as expected, but surprisingly increased carbon mineralization through CH4 production in deep peat. Carbon mineralization under anaerobic conditions is of sufficient magnitude to have a major influence on peat accumulation and helps to explain the thin (< 2 m deep), old (> 13,000 yr) peat deposit found in Big Run Bog.  相似文献   

15.
Graphic presentation of weekly rates of change of algal biomass (expressed as chlorophyll a) and nutrient and dissolved oxygen concentrations can be regarded as harmonic oscillation motion. Maximum amplitudes of these oscillations provide a useful tool to assess the degree of stability of aquatic ecosystems in relation to their trophic state. Data sets from seven different lakes ranging from hypereutrophic to oligo-mesotrophic were processed using a computerized method. The high values of oscillation amplitudes of approximately 150 g l–1 wk–1 chlorophyll a, 500 g l–1 wk–1 ammonia nitrogen, 50 g l–1 wk–1 soluble reactive phosphorus and 10 mg l–1 wk–1 dissolved oxygen, indicated strong ecosystem instability, while low values of less than 10 g l–1 wk–1 of chlorophyll a, 20 g l–1 wk–1 ammonia nitrogen, 2 g l–1 wk–1 soluble reactive phosphorus, and 3 mg l–1 wk–1 dissolved oxygen represented a stable system. Oscillation amplitudes of the chlorophyll a values were found to be the most representative indicator of ecosystem stability.  相似文献   

16.
Summary Hybridoma IND1 viability was 95% for dilution rates (D) ranging from 45 to 100% of max (0.037 hr–1). Over this range, the cell concentration and total protein content increased with D. Washout occurred at D=0.041 hr–1, but the intracellular protein content continued to increase. The high- and low-content modes of the intracellular antibody distribution did not vary with D. The fraction of cells with high antibody content decreased with time, except for an increase at D=0.041 hr–1. This decrease did not affect the specific antibody production rate, which, like the high- and low-content modes, was independent of D.  相似文献   

17.
Non-mycorrhizal plants of the alpine sedge, Kobresia myosuroides, take up the amino acid glycine from nutrient solutions at greater rates than NO inf3 sup- or NH inf4 sup+ . The amino acids glutamate and proline were also taken up at high rates. Total plant biomass was twice as high after 4 months of growth on glycine, compared to NH4NO3, with significant increases in both root and leaf biomass. By taking advantage of differences in the 13C signature of air in the growth chamber and the glycine used for growth, a two-member mixing model was used to estimate that a significant amount of the glycine was taken up as intact molecules, enough to contribute 16% of the total carbon assimilation over a 4-month growing period. Glycine uptake was inhibited when roots were exposed to N2 in place of air, and when the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) was added to the root solution. From these results it is concluded that glycine uptake occurs through active transport. Glycine uptake exhibited a Q10 of 2.0 over the temperature range 5–15° C, with relatively high rates maintained at the lowest temperature measured (5° C). Roots of Kobreasia were not capable of taking up NH inf4 sup+ at measureable rates. To our knowledge, this is the first report of a plant whose non-mycorrhizal roots cannot take up NH inf4 sup+ . Measurements of three N fractions (NO inf3 sup- , NH inf4 sup+ , and total amino acids) in the soil pore water were made over two growing seasons in two Kobresia dry meadows using microlysimeters. At the West Knoll site, which is characterized by soils with average amounts of organic matter, the dominant forms of N in the soil pore water were NO inf3 sup- and NH inf4 sup+ (0–450 mol L-1). Amino acid concentrations were generally less than 20 mol L-1 at this site. At the East Knoll site, which is characterized by soils with higher than average amounts of organic matter, amino acids were generally present at higher concentrations (17–100 mol L-1), compared to NO inf3 sup- and NH inf4 sup+ . The most abundant amino acids were glycine (10–100 mol L-1), glutamate (5–70 mol L-1), and late in the season cystein (5–15 mol L-1). The results demonstrate that this sedge, which dominates dry meadow communities in many alpine ecosystems, is capable of taking up intact amino acids as a principal N source, and has access to high amino acid concentrations in certain alpine soils. Such uptake of organic N may accommodate plant N demands in the face of slow alpine N mineralization rates due to cold soil temperatures.  相似文献   

18.
Three specific growth rates, 0.23, 0.45 and 0.51 h–1, were used to cultivate Corynebacterium glutamicum in a pH-auxostat. The specific formation rates of most amino acids increased by raising the specific growth rates. The highest specific growth rate, 0.51 h–1, favors the production of LEU; whereas the highest production yield for ALA and GLU were at = 0.23 h–1. A correlation among specific growth rates, glucose consumption rate, and production yields of amino acids was obtained.  相似文献   

19.
Plant phenotype stability during ex vitro growth, one of the main requirements of plant micropropagation, was tested on tobacco. Plants cultivated in vitro in the presence of 3 % sucrose under photon flux density (PFD) of 200 mol m–2 s–1 (3 % HL plants) showed the best growth and photosynthetic parameters in the course of 7-day acclimation. However, significant change in phenotype of these plants appeared under a decrease in PFD to 50 mol m–2 s–1 during further ex vitro growth (in the period of 7th – 17th day). Much higher internodia elongation was found in 3 % HL plants in comparison with plants grown in vitro on sucrose media under PFD of 50 mol m–2 s–1 (3 % LL) or without sucrose either under PFD of 50 mol m–2 s–1 or 200 mol m–2 s–1 (0 % LL, 0 % HL). It can be presumed that 3 % HL plants show permanent demand for high PFD. Neither ABA or chlorophyll contents nor de novo thylakoid membrane synthesis were related to the morphogenic effect of low PFD. Changeable contents of hexoses in leaves of 3 % HL and 3 % LL plants were in no direct correlation to the elongated growth.  相似文献   

20.
Node explants collected from flowering plants of Vanda spathulata, an endemic and exquisite orchid of Peninsular India and Sri Lanka, were cultured in Mitra medium with combinations of 4.4–88.8 m 6-benzyl adenine (BA) and 0.0–114.2 m indole-3-acetic acid (IAA). Combinations of 44.4 m BA with 17.1 or 28.5 m IAA and 66.6 mM BA with 28.5 or 40.0 m IAA induced maximum formation of 12.6 and 12.1 shoots / node, respectively, in a 6-month period. Subcultured nodal explants produced maximum of 6.1 shoots at combinations of 22.2–44.4 m 21 BA and 5.7–28.5 m IAA. Rooting of shoots occurred in medium containing 75 g l–1 banana pulp and 5.7 m IAA within 3–9 weeks. Plantlets of 2–5 cm length possessing two to five roots established easily in community pots at 80–90% rates without hardening. Community potted plants introduced into forest segments at Ponmudi and Palode in Southern Western Ghats of India established at a rate of 50–70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号