首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gonadotropin-releasing hormone (GnRH) stimulates release of gonadotropin hormone (GTH) through interaction with high affinity receptors in the goldfish pituitary. In the present study, we investigated desensitization of two native GnRH peptides, [Trp7, Leu8]-GnRH (sGnRH) and [His5, Trp7, Tyr8]-GnRH (cGnRH-II), using superfused fragments of goldfish pituitary in vitro. Pulsatile treatment with either sGnRH or cGnRH-II (2-min pulses given every 60 min) resulted in dose-dependent secretion of GTH from the goldfish pituitary; cGnRH-II had a greater GTH release potency and displayed a greater receptor binding affinity than sGnRH. Both sGnRH and cGnRH-II-induced GTH release were partially inhibited by concomitant treatment with either [D-Phe2, Pro3, D-Phe6]-GnRH or [D-pGlu1, D-Phe2, D-Trp3.6]-GnRH. These antagonists had greater receptor binding affinities than the native peptides, with no stimulatory action on GTH release in the absence of the GnRH agonists. Continuous treatment with either sGnRH or cGnRH-II (10(-7) M), rapidly desensitized pituitary GTH release in a biphasic fashion; initially there was a rapid increase in GTH release of approximately 10-20-fold (phase 1), followed by a sharp decline in GTH release, reaching a stable concentration 2-3-fold above the basal level (phase 2). Further stimulation of the pituitaries with sGnRH or cGnRH-II (10(-7) M) (second treatment) after 60 min recovery resulted in a significantly lower sGnRH or cGnRH-II-induced GTH release compared to that observed during the initial treatment period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In perifused immortalized GnRH neurons (GT1-7), simultaneous measurements of GnRH and cAMP revealed that the secretory profiles for both GnRH and cAMP are pulsatile. An analysis of GnRH and cAMP pulses in 16 independent experiments revealed that 25% of pulses coincide. Inversion of the peak and nadir levels was found in 33% and random relationship between GnRH and cAMP found in 42% of analyzed pulses. The random relation between GnRH and cAMP pulse resets to synchronous after an inverse relation between pulses occurred during the major GnRH release, indicating that GnRH acts as a switching mechanism to synchronize cAMP and GnRH release in perifused GT1-7 neurons. Activation of GnRH receptors with increasing agonist concentrations caused a biphasic change in cAMP levels. Low nanomolar concentrations increased cAMP production, but at high concentrations the initial increase was followed by a rapid decline to below the basal level. Blockade of the GnRH receptors by peptide and nonpeptide antagonists generated monotonic nonpulsatile increases in both GnRH and cAMP production. These findings indicate that cAMP positively regulates GnRH secretion but does not participate in the mechanism of pulsatile GnRH release.  相似文献   

3.
L Jennes  D Coy  P M Conn 《Peptides》1986,7(3):459-463
The binding and uptake of the GnRH agonist D-Lys6-GnRH and of the antagonists [N-Ac-D-(pyro)-Cl-Phe1,2-D-Trp3-Lys6-D-Ala10]-GnRH and D-p-Glu1-D-Phe2-D-Trp3-D-Lys6-GnRH by dispersed pituitary gonadotropes was studied with electron microscopy. The peptides were coupled to colloidal gold markers with a diameter of 6 or 20 nm which were incubated separately or together for time periods between 15 and 180 min. Both antagonists could be found after 45 and 180 min at 37 degrees C in lysosomes as well as at the plasma membrane of gonadotropes. Co-incubation of both antagonists or of agonist and either antagonist resulted in uptake of the conjugates into separate lysosomes as well as mixed together into the same lysosome. Localization of the antagonists in structures associated with the Golgi apparatus was not observed at the time points studied. The results show that both GnRH agonist- and antagonist-conjugates are biologically active and that they are internalized by the gonadotropes via receptor mediated endocytosis. The failure to detect antagonist conjugates in the Golgi apparatus may indicate that passage through this organelle requires activation of the receptors by agonists and that the uptake of antagonist into lysosomes due to normal membrane protein turnover.  相似文献   

4.
Gonadotropin secretion was examined in ovariectomized sheep after passive immunization against gonadotropin-releasing hormone (GnRH). Infusion of ovine anti-GnRH serum, but not control antiserum, rapidly depressed serum concentrations of luteinizing hormone (LH). The anti-GnRH-induced reduction in serum LH was reversed by circhoral (hourly) administration of a GnRH agonist that did not cross-react with the anti-GnRH serum. In contrast, passive immunization against GnRH led to only a modest reduction in serum concentrations of follicle-stimulating hormone (FSH). Pulsatile delivery of the GnRH agonist did not influence serum concentrations of FSH. Continuous infusion of estradiol inhibited and then stimulated gonadotropin secretion in animals passively immunized against GnRH, with gonadotrope function driven by GnRH agonist. However, the magnitude of the positive feedback response was only 10% of the response noted in controls. These data indicate that the estradiol-induced surge of LH secretion in ovariectomized sheep is the product of estrogenic action at both hypothalamic and pituitary loci. Replacement of the endogenous GnRH pulse generator with an exogenous generator of GnRH-like pulses that were invariant in frequency and amplitude could not fully reestablish the preovulatory-like surge of LH induced by estradiol.  相似文献   

5.
The relationship between number of receptors for gonadotropin-releasing hormone (GnRH) and the ability of the anterior pituitary gland to release luteinizing hormone (LH) was examined in ovariectomized ewes. A GnRH antagonist was used to regulate the number of available receptors. The dose of GnRH antagonist required to saturate approximately 50 and 90% of GnRH receptors in ovariectomized ewes was determined. Thirty min after intracarotid infusion of GnRH antagonist, ewes were killed and the number of unsaturated (i.e., those available for binding) pituitary GnRH receptors was quantified. Infusion of 10 and 150 micrograms GnRH antagonist over a 5-min period reduced binding of the labeled ligand to approximately 50 and 12% of controls, respectively. The effect of reducing the number of GnRH receptors on release of LH after varying doses of the GnRH agonist, D-Ala6-GnRH-Pro9-ethylamide (D-Ala6-GnRH) was then evaluated. One of four doses of D-Ala6-GnRH (0.125, 2.5, 50 and 400 micrograms) was given i.v. to 48 ovariectomized ewes whose GnRH receptors had not been changed or were reduced to approximately 50 or 12% of control ewes. In ewes with a 50% reduction in GnRH receptors, total release of LH (area under response curve) was lower than that obtained for controls (P less than 0.01) at the 0.125-micrograms dose of D-Ala (6.1 +/- 0.7 cm2 vs. 13.5 +/- 0.7 cm2) but was not different at the 2.5-, 50- or 400-micrograms doses of D-Ala6-GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
There are two types of superactive agonists of gonadotropin-releasing hormone (GnRHa-I: (D-amino acid)6-GnRH and GnRHa-II: (D-amino acid)6-(desGly)10-GnRH- ethylamide) the high hormonal activity of which is understood to be due to their higher receptor affinity and their higher proteolytic stability as compared with the native GnRH sequence. Using the soluble fractions of various rat tissues in studies on the inactivation of GnRH peptides, we confirmed the higher proteolytic resistance of GnRHa-II, but not of D-Phe6-GnRH (GnRHa-I) and of another analog, D-Trp3-D-Phe6-GnRH, as compared with GnRH. The exact behaviour of the peptides during degradation was found to be dependent on the peptide concentrations used, showing the importance of using conditions as near to the physiological ones a possible. Towards the membrane fractions, however, the order of degradability was found to be GnRH much greater than D-Phe6-GnRH much greater than D-Trp3-D-Phe6-GnRH. The pharmacokinetic consequences of the different proteolytic degradabilities of the GnRH peptides, observed in rats, were a moderate increase in the biological half-life of D-Phe6-GnRH by 2.5-fold, as compared with GnRH, and a small increase in half-life of D-Trp3-D-Phe6-GnRH by 1.4-fold when compared with D-Phe6-GnRH. Whereas no intact GnRH was recovered in rat urine, small amounts of D-Phe6-GnRH (about 1% of dose) and high amounts of D-Trp3-D-Phe6-GnRH (25.5%) were excreted into urine. Combining the biochemical and pharmacokinetic data, it is concluded that proteolytic stability of GnRH analogs in pharmacological terms means stability towards membrane enzymes (pharmacologically-related stability) and that designing analogs with further increased proteolytic stability will be of only limited consequences with respect to their biological half-lives, the glomerular filtration rate of the kidney becoming the determining factor in the peptide clearance.  相似文献   

7.
A powerful GnRH antagonist: [Ac-D-Trp1,3,D-Cpa2,D-Lys6,D-Ala10]-GnRH (MI-1544) and a superactive GnRH agonist: [D-Phe6,desGly10]-GnRH(1-9)EA (OVURELIN) were used in long-term administration to compare their effects on the inhibition of ovulation, LH and progesterone (P) release, LH content of pituitaries as well as on the recovery period. Both analogs showed 100% inhibitory effects on ovulation in very low doses during the daily treatment for 21 days. The antagonist prevented LH release already after the first injection, decreased the serum P level to 40%, and increased the LH content of the pituitary up to 180%, inhibiting only the release but not the synthesis of LH. The agonist showed marked LH-releasing effects on the first day of the treatment, which were reduced to 12% on the 7th day. Serum P concentration was dropped to 68% by the end of the treatment. No change was found in the LH content of pituitaries in the group treated with the agonist. Ovaries showed polifollicular pictures in the antagonist-treated group, and persistent corpora lutea were seen in the ovaries from the agonist-treated group. Regular estrous cycles returned 13-15 days after ceasing the treatment with the antagonist and 3-5 days after ceasing the treatment with the agonist. No edema-inducing effect was observed after the injections of the antagonist in doses of 100 times higher than the single antiovulatory dose.  相似文献   

8.
Gonadotropin-Releasing Hormone (GnRH) is a small neuropeptide that regulates pituitary release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These gonadotropins are essential for the regulation of reproductive function. The GnRH-containing neurons are distributed diffusely throughout the hypothalamus and project to the median eminence where they release GnRH from their axon terminals into the hypophysiotropic portal system (1). In the portal capillaries, GnRH travels to the anterior pituitary gland to stimulate release of gonadotropins into systemic circulation. GnRH release is not continuous but rather occurs in episodic pulses. It is well established that the intermittent manner of GnRH release is essential for reproduction (2, 3).Coordination of activity of multiple GnRH neurons probably underlies GnRH pulses. Total peptide content in GnRH neurons is approximately 1.0 pg/cell (4), of which 30% likely comprises the releasable pool. Levels of GnRH during a pulse (5, 6), suggest multiple GnRH neurons are probably involved in neurosecretion. Likewise, single unit activity extracted from hypothalamic multi-unit recordings during LH release indicates changes in activity of multiple neurons (7). The electrodes with recorded activity during LH pulses are associated with either GnRH somata or fibers (8). Therefore, at least some of this activity arises from GnRH neurons.The mechanisms that result in synchronized firing in hypothalamic GnRH neurons are unknown. Elucidating the mechanisms that coordinate firing in GnRH neurons is a complex problem. First, the GnRH neurons are relatively few in number. In rodents, there are 800-2500 GnRH neurons. It is not clear that all GnRH neurons are involved in episodic GnRH release. Moreover, GnRH neurons are diffusely distributed (1). This has complicated our understanding of coordination of firing and has made many technical approaches intractable. We have optimized loose cell-attached recordings in current-clamp mode for the direct detection of action potentials and developed a recording approach that allows for simultaneous recordings from pairs of GnRH neurons.  相似文献   

9.
The characteristic pulsatile secretion of GnRH from hypothalamic neurons is dependent on an autocrine interaction between GnRH and its receptors expressed in GnRH-producing neurons. The ontogeny and function of this autoregulatory process were investigated in studies on the properties of GnRH neurons derived from the olfactory placode of the fetal rat. An analysis of immunocytochemically identified, laser-captured fetal rat hypothalamic GnRH neurons, and olfactory placode-derived GnRH neurons identified by differential interference contrast microscopy, demonstrated coexpression of mRNAs encoding GnRH and its type I receptor. Both placode-derived and immortalized GnRH neurons (GT1-7 cells) exhibited spontaneous electrical activity that was stimulated by GnRH agonist treatment. This evoked response, as well as basal neuronal firing, was abolished by treatment with a GnRH antagonist. GnRH stimulation elicited biphasic intracellular calcium ([Ca2+]i) responses, and both basal and GnRH-stimulated [Ca2+]i levels were reduced by antagonist treatment. Perifused cultures released GnRH in a pulsatile manner that was highly dependent on extracellular Ca2+. The amplitude of GnRH pulses was increased by GnRH agonist stimulation and was diminished during GnRH antagonist treatment. These findings demonstrate that expression of GnRH receptor, GnRH-dependent activation of Ca2+ signaling, and autocrine regulation of GnRH release are characteristics of early fetal GnRH neurons and could provide a mechanism for gene expression and regulated GnRH secretion during embryonic migration.  相似文献   

10.
Photoreactive derivatives of GnRH and its analogues were prepared by incorporation of the 2-nitro-4(5)-azidophenylsulfenyl [2,4(5)-NAPS] group into amino acid residues at positions 1, 3, 6, or 8 of the decapeptide sequence. The modification of Trp3 by the 2,4-NAPS group led to a complete loss of the luteinizing hormone (LH) releasing as well as LH-release-inhibiting activity of the peptide. The [D-Lys(2,4-NAPS)]6 analogue was a very potent agonist that, after covalent attachment by photoaffinity labeling, caused prolonged LH secretion at a submaximal rate. [Orn(2,4-NAPS)]8-GnRH, a full agonist with a relative potency of 7% of GnRH, after photoaffinity labeling caused prolonged maximal LH release from cultured pituitary cells. In contrast, [Orn(2,5-NAPS)]8-GnRH, although being equipotent with the 2,4-NAPS isomer in terms of LH releasing ability, was unable to cause prolonged LH release after photoaffinity labeling. Thus, [Orn(2,4-NAPS)]8-GnRH is a very effective photolabeling ligand of the functionally significant pituitary GnRH receptor. Based on this compound, a pituitary peptidase resistant derivative, D-Phe6,[Orn(2,4-NAPS)]8-GnRH-(1-9)-ethylamide, was synthesized. This derivative showed high-affinity binding to pituitary membranes with a Kd comparable to those of other GnRH analogues. A radioiodinated form of this peptide was used for pituitary GnRH-receptor labeling. This derivative labeled 59- and 57-kDa proteins in rat and 58- and 56-kDa proteins in bovine pituitary membrane preparations, respectively. This peptide also labeled pituitary GnRH receptors in the solubilized state and therefore appears to be a suitable ligand for the isolation and further characterization of the receptor.  相似文献   

11.
R L Matteri  G P Moberg 《Peptides》1985,6(5):957-963
Although a hypothalamic site of action has been firmly established for opiate-mediated gonadotropin regulation, there have been several reports which indicate the possibility of a direct influence on the pituitary gland. The objective of this study was to further investigate this possibility in an in vitro pituitary perifusion system utilizing ovine tissue. Treatment with gamma-endorphin (GE) or human beta-endorphin (hBE) resulted in elevated basal LH release (p less than 0.05), followed by an inhibition in the response to a subsequent GnRH challenge (p less than 0.05). The stimulatory effect of hBE was found to be dose-responsive (p less than 0.01). PRL secretion was not similarly stimulated. Ovine beta-endorphin (oBE) had no effect on LH secretion, even though it differs from hBE by only 2 amino acids and contains the active GE sequence. Met-enkephalin also did not influence gonadotropin secretion. Naloxone pretreatment did not reverse the effects of hBE on gonadotropin release. It was found, however, that [D-pGlu1, D-Phe2, D-Trp3,6]-GnRH, a specific GnRH receptor antagonist, did reduce hBE-induced LH and FSH release (p less than 0.05). Naloxone pretreatment alone suppressed the response to GnRH (p less than 0.05). These data indicate that certain opioid peptides can influence ovine gonadotropin secretion in vitro by activating the GnRH receptor. Furthermore, a facilitory role is suggested for endogenous opiates in the local regulation of pituitary gonadotropin secretion.  相似文献   

12.
13.
The biological activity of three gonadotropin releasing hormone (GnRH) antagonists was evaluated in the following assays: suppression of GnRH-mediated luteinizing hormone (LH) secretion by cultured pituitary cells, suppression of the spontaneous LH release by ovariectomized rats, blockade of ovulation in regularly cycling females and inhibition of binding of a potent radiolabeled agonist to rat pituitary membrane homogenates. The peptides were: [Ac-delta 3Pro1,4FDPhe2, DTrp3,6]-GnRH (Antagonist 1); [Ac-delta 3Pro1,4FDPhe2,DNAL(2)3,6]-GnRH (Antagonist 2); and [Ac-DNAL(2)2,4FDPhe2,DTrp3,DArg6]-GnRH (Antagonist 3). All three antagonists exhibited similarly high potency in suppressing LH secretion in vitro, while Antagonist 1 was the most active peptide in the radioreceptor assay. When administered by gavage, Antagonist 3 exhibited the highest potency to inhibit LH secretion in gonadectomized rats and to block ovulation. Comparison of the oral versus the subcutaneous mode of administration of these analogs indicates that less than 1% is absorbed after gavage. However, these data demonstrate that the intragastric administration of GnRH antagonists can lower gonadotropin secretion and interfere with reproductive functions.  相似文献   

14.
In a series of four experiments, the temporal development of acute inhibitory and delayed stimulatory effects of 17 beta-estradiol (E) on luteinizing hormone (LH) release by superfused rat anterior pituitary cells pulsed with gonadotropin-releasing hormone (GnRH) was studied. Dispersed anterior pituitary cells from ovariectomized rats were cultured on Bio-Beads for 3 days and then placed in columns and superfused for up to 24 hr. During superfusion, the cells were exposed to GnRH pulses (3 X 10(-9) M, one 6-min pulse/hr). Cells treated with E (3 X 10(-10) M) either before (only 24 hr prior to superfusion) or before and during superfusion released significantly (P less than 0.05) more LH in response to the first few pulses of GnRH than cells treated with diluent. In contrast, cells treated with E only during superfusion initially released less GnRH-induced LH than cells treated with diluent. In a subsequent experiment, the inhibitory effect of E reached a maximum by 1.5 hr (P less than 0.01), and then gradually disappeared after 4.5 hr. Cells superfused simultaneously with E and fixed "low"-dose GnRH (5 X 10(-10) M) pulses did not exhibit enhanced LH responses with time to that dose of GnRH. However, E-superfused cells responded more than diluent-superfused cells to subsequent stimulation with a higher-dose GnRH pulse. Superfusion of cells with E for 16.5 hr in the absence of GnRH pulses also did not increase release of LH to low-dose (5 X 10(-10) M) pulses of GnRH, yet did cause a transitory increase to subsequent high-dose (10(-8) M) GnRH pulses. In conclusion, these results demonstrate the direct biphasic inhibitory then stimulatory effects of E on GnRH-induced LH release by superfused rat anterior pituitary cells. Expression of the stimulatory effect of E is related to the dose of GnRH.  相似文献   

15.
The aim of this study was to investigate incompetence for oestradiol-induced LH surges in long-term ovariectomized gilts and male pigs. Gilts (250 days old; n = 36), which had been ovariectomized 30 (OVX 30) or 100 days (OVX 100) before the start of treatment, were challenged i.m. with oestradiol benzoate and were either given no further treatment, fed methallibure to inhibit endogenous GnRH release or fed methallibure and given i.v. pulses of 100 or 200 ng GnRH agonist at 1 h intervals during the LH surge (48-96 h after oestradiol benzoate). The same treatments were applied to long-term orchidectomized male pigs (ORC, n = 23). In addition, one ORC group was not injected with oestradiol benzoate but was fed methallibure and given pulses of 200 ng GnRH agonist. Oestradiol benzoate alone induced an LH surge in the OVX 30 group only (5/6 gilts), methallibure suppressed (P < 0.05) oestradiol benzoate-induced LH secretion, while pulses of 100 ng GnRH agonist in animals fed methallibure produced LH surges in four of six OVX 30 and four of six OVX 100 gilts. The induced LH surges were similar to those produced by oestradiol benzoate alone in OVX 30 gilts. Pulses of 200 ng GnRH agonist produced LH surges in OVX 30 (6/6) and OVX 100 (6/6) gilts and increased the magnitude of the induced LH surge in OVX 100 gilts (P < 0.05 compared with 100 ng GnRH agonist or OVX 30 control). Pulses of 200 ng GnRH agonist also induced LH surge release in ORC male pigs (5/6), but were unable to increase LH concentrations in a surge-like manner in ORC animals that had not been given oestradiol benzoate, indicating that oestradiol increases pituitary responsiveness to GnRH. These results support the hypothesis that oestradiol must inhibit secretion of LH before an LH surge can occur. It is concluded that incompetence for oestradiol-induced LH surges in long-term ovarian secretion-deprived gilts and in male pigs is due to the failure of oestradiol to promote a sufficient increase in the release of GnRH.  相似文献   

16.
Summary 1. Inin vitro studies with adult male rats we have recently shown that the delta-opioid agonist DTLET inhibits the release of the Gonadotropin-Releasing Hormone (GnRH) from hypothalamic fragments containing the arcuate nucleus and the median eminence. This effect is receptor mediated and eicosanoid dependent (Gerozissiset al., 1993).2. In the present study we report that the delta-opioid antagonists with negative intrinsic activity, Diallyl-G and ICI 174864, applied under the same experimental conditions (30 min static incubations at 37°C, in a potassium rich milieu), in the absence of the agonist DTLET, also exert a similar to the agonist inhibitory effect on the release of GnRH.3. The dose-dependent inhibitory effect of Diallyl-G on GnRH release is reversed by increasing concentrations of DTLET. The mu and delta opioid antagonist, naloxone is without effect in the absence of DTLET. However, naloxone acts as an antagonist on the Diallyl-G-induced inhibition of GnRH release.4. Diallyl-G also inhibits the release of prostaglandin E2 (PGE2). In the presence of indomethacin or nordihydroguaiaretic acid, Diallyl-G is ineffective to further inhibit the release of GnRH. These latter observations taken together with the results of eicosanoid estimation suggest that PGE2 but not leukotrienes participate in the agonist-independent effects of Diallyl-G on GnRH release.5. Therefore these results support the hypothesis that delta-opioid antagonists with negative intrinsic activity exert agonist-independent biological responses similar to those of the agonists.  相似文献   

17.
Gonadotropin-releasing hormone (GnRH) is critical for the initiation and maintenance of reproduction in vertebrates. Information regarding GnRH release is abundant in mammals, but absent in poikilothermic tetrapods. In this study, we established a novel GnRH enzyme immunoassay (EIA) to measure GnRH release over time from hypothalamic explants isolated from mature field-caught and commercially-acquired male bullfrogs, Rana catesbeiana. Hypothalamic explants from rats were used as a positive control to test the sensitivity and accuracy of our EIA and to ensure our in vitro system could detect GnRH pulses. Prominent GnRH pulses were present in the majority (9/10) of rat hypothalamic explants, but absent in all (17/17) of the commercial bullfrogs and the majority (5/8) of field-caught bullfrogs. In three cases where GnRH pulses were observed in field-caught bullfrogs, there was only one pulse during the 2-h incubation period; high-frequency pulses similar to those observed in rats were not observed. Veratridine, which opens voltage-gated sodium channels, stimulated GnRH release in all explants cultured in the presence of Ca(2+), demonstrating explant viability. The levels of both spontaneous and veratridine-induced GnRH release were significantly higher in field-caught than commercial bullfrogs. This study demonstrated, for the first time, the temporal pattern of GnRH release in a poikilothermic tetrapod. Further, our results suggest the levels and patterns of GnRH output in bullfrogs are subject to the dynamic regulation by physiological and environmental cues.  相似文献   

18.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

19.
Cultured gonadotropin-releasing hormone (GnRH) neurons have been shown to express GnRH receptors. GnRH binding to its receptors activates three types of G-proteins at increasing doses. These G-proteins selectively activate or inhibit GnRH secretion by regulating the intracellular levels of Ca2+ and cAMP. Based on these recent observations, we build a model in which GnRH plays the roles of a feedback regulator and a diffusible synchronizing agent. We show that this GnRH-regulated GnRH-release mechanism is sufficient for generating pulsatile GnRH release. The model reproduces the observed effects of some key drugs that disturb the GnRH pulse generator in specific ways. Simulations of 100 heterogeneous neurons revealed that the synchronization mediated by a common pool of diffusible GnRH is robust. The population can generate synchronized pulsatile signals even when all the individual GnRH neurons oscillate at different amplitudes and peak at different times. These results suggest that the positive and negative effects of the autocrine regulation by GnRH on GnRH neurons are sufficient and robust in generating GnRH pulses.  相似文献   

20.
To determine what changes occur in the activity of gonadotropin-releasing hormone (GnRH) neurons during pubertal development in primate species we tested the hypotheses that there are morphologic differences between GnRH-containing neurons in juvenile versus adult monkeys, and the low activity of the reproductive axis is governed by hypothalamic GnRH release in monkeys prior to puberty. We removed the brains from 5 juvenile and 5 adult male monkeys (Macaca fascicularis) and blocked, sectioned, and prepared each hypothalamus for light microscopic immunocytochemistry for GnRH-containing cells. The distribution and number of GnRH-containing neurons were similar in adult and juvenile brains; however, GnRH-containing perikarya in adult brains were significantly larger in total cross-sectional area (200 +/- 12 vs. 169 +/- 8 micron 2, P less than 0.05) and in cross-sectional area of the cytoplasm (139 +/- 2 vs. 88 +/- 6 micron 2, P less than 0.05) than in juvenile brains. In another group of 10 juvenile male macaques, we administered an antiserum to GnRH (Fraser #94; 2 ml/kg, i.v.) and monitored the effects on plasma luteinizing hormone (LH) and testosterone concentrations. The percentage of plasma samples with detectable LH levels decreased significantly (from 26.67 +/- 8.3% to 5.3 +/- 3.4%, P less than 0.05) after GnRH antiserum administration; however, plasma testosterone concentrations (0.08 +/- 0.02 ng/ml) remained unchanged. We conclude that during pubertal maturation in primate species there is increased synthesis and release of GnRH from a population of GnRH neurons that are active prior to puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号