首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In earlier works we have found that in the mammalian pineal organ, a part of autonomic nerves--generally thought to mediate light information from the retina--form vasomotor endings on smooth muscle cells of vessels. We supposed that they serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. In the present work, we investigated whether peripheral nerves present in the photoreceptive pineal organs of submammalians form similar terminals on microvessels. In the cyclostome, fish, amphibian, reptile and bird species investigated, autonomic nerves accompany vessels entering the arachnoidal capsule and interfollicular meningeal septa of the pineal organ. The autonomic nerves do not enter the pineal tissue proper but remain in the perivasal meningeal septa isolated by basal lamina. They are composed of unmyelinated and myelinated fibers and form terminals around arterioles, veins and capillaries. The terminals contain synaptic and granular vesicles. Comparing various vertebrates, more perivasal terminals were found in reptiles and birds than in the cyclostome, fish and amphibian pineal organs. Earlier, autonomic nerves of the pineal organs were predominantly investigated in connection with the innervation of pineal tissue. The perivasal terminals found in various submammalians show that a part of the pineal autonomic fibers are vasomotoric in nature, but the vasosensor function of some fibers cannot be excluded. We suppose that the vasomotor regulation of the pineal microvessels in the photosensory submamalian pineal--like in mammals--may serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. The higher number of perivasal terminals in reptiles and birds may correspond to the higher metabolic activity of the tissues in more differentiated species.  相似文献   

2.
In order to extend our understanding of the role of nerve fibers in the structure and function of bone marrow stroma, we have examined nerve terminals, arterioles, and capillaries in femoral bone marrow tissues of 50 C57BL strain mice, using electron microscopy and morphometric methods. Within the adventitia of arterioles, a particular type of cell, termed periarterial adventitial (PAA) cell, is characterized by a thin veil-like cytoplasm which concentrically surrounds both nerves and arterioles. Nerve fibers containing both unmyelinated and myelinated axons are distributed mainly between the layers of PAA cells, but are found rarely on the sinus walls or within the hematopoietic parenchyma. Quantitatively, the efferent nerve terminals with many synaptic vesicles are distributed mainly beside arterial smooth muscle cells (Type I: 58.8%) or between the layers of PAA cells (Type III: 33.2%), and rarely in hematopoietic parenchyma (Type II: 5.3%) or on sinus walls (Type IV: 2.7%). In the case of Type II-IV nerve terminals, efferent (autonomic) nerves and bone marrow stromal cells which are connected by gap junctions (sinus adventitial reticular cells, intersinusoidal reticular cells, and PAA cells) appear to constitute a potential functional unit for signal conduction. We would like to propose a new term for this anatomical unit in marrow, the "neuro-reticular complex."  相似文献   

3.
Lymph node nerve endings have been studied in 1- to 48-day-old mice. Serial sections of Epon-embedded lymph nodes were observed under the electron microscope to find the nerve endings. Most lymph node nerve fibers finally reach the smooth muscle cells of arterioles and muscular venules. Both kinds of vascular endings are similar, although endings are less numerous on venules. Nerve endings consist of one or more nerve processes surrounded by a usually incomplete Schwann cell sheath; frequently, axons show wide areas directly facing the muscle cells. The distance between such a naked axon and a myocyte ranges from 100 to 800 nm. Small granulated and clear vesicles are especially abundant in varicosities of nerve processes that are located very close to muscle cells. Nerve endings of lymph node vasculature probably correspond to vasomotor sympathetic adrenergic endings, regulating the degree of contraction of vessels which have a muscular layer. Other kinds of nerve endings also exist in lymph nodes: some axons appear free in the stroma and contact the surfaces of reticular cells; the latter also extend delicate cytoplasmic processes that surround the axons. The functional significance of nerve cell-reticular cell contacts is unknown.  相似文献   

4.
The distribution and structure of the ureteric nerves in a small series of mammals was compared with that previously demonstrated in the rat. There was marked interspecies variation in the extent to which the nerves penetrated the wall of the ureter and in the degree of development of the deep submucous plexus. In animals with a highly developed deep submucous plexus, terminal arterioles frequently passed through the muscle coat before breaking up into capillaries. These vessels were surrounded by a fine periarteriolar plexus and were accompanied in their course through the muscle coat by one or more branches of the adventitial nerves. Intramuscular nerves not related to arterioles contained few axons with terminals classifiable as either adrenergic or cholinergic, and in animals in which the muscle cells were arranged in fascicles rather than in sheets, the nerves were typically interfascicular in position. As in the rat, only the periarteriolar plexuses contained large numbers of adrenergic axons. Cholinergic axons were generally few, but were not uncommon in the deep submucous plexus when this was well-developed. The majority of the terminals encountered in the intramural nerves contained variable and usually small numbers of both clear and large dense-cored vesicles. The relationship between these terminals and those defined in the submucous nerves of the rat ureter was discussed and it was suggested that the marked variations in the diameter of the axons in the terminal areas and in the number of vesicles in the terminals were related to the effects of the mechanical and other derangements which occur during processing.  相似文献   

5.
Summary Efferent arterioles leaving juxtamedullary glomeruli in the kidneys of rats have a media comprized of a layer of closely packed smooth muscle cells. This muscle coat continues along the length of the efferent arterioles and arteriolae rectae to a level deep in the outer medullary zone, where smooth muscle cells are gradually replaced by pericytes characteristic of the non-muscular arterial vasa recta.Bundles of unmyelinated nerve fibers accompany the efferent arterioles and arteriolae rectae to the level where smooth muscle is no longer found in the media of the latter vessels. Close associations between smooth muscle cells and axons are marked by axonal dilatations which lie adjacent to muscle cells. There is no modification of either the axonal or the muscle cell membrane at these sites, nor do axons penetrate the basal lamina of muscle fibers. Large granular vesicles and small granular and agranular vesicles occur in most axons at the dilations, although the granular material in the small granular vesicles is usually sparse and in dispersed form.The nerves are considered to be primarily adrenergic because of strong catecholamine fluorescence demonstrated by other workers in association with the efferent arteries and arteriolae rectae. Poor definition of the small granular vesicles, which are commonly supposed to contain catecholamines, is ascribed to extraction of catecholamines during processing, discharge of granules prior to fixation, or inability of these axons to store catecholamines in quantity under physiological conditions.Financial assistance during the progress of this work was obtained from the Medical Research Council of Canada.  相似文献   

6.
Summary This investigation is concerned with pineal organs of human embryos 60 to 150 days old. At every stage central nerve fibres enter the pineal organ by way of the habenular commissure, but are restricted to the pineal's proximal part. On about the 60th day of the development the sympathetic nervus conarii grows into the distal pole of the pineal organ from a dorso-caudal direction and plays the predominant part in the innervation of the pineal organ. After penetrating, it soon branches out and forms a network in the pineal tissue. Much later, not until the 5th embryonic month, sympathetic nerves appear accompanying the supplying vessels in the perivascular spaces. After a short time these nerves pierce the outer limiting basement membrane and penetrate the parenchyma. Towards the end of the 5th embryonic month the axons of the sympathetic nerves form varicosities containing clear and dense core vesicles. At this point large amounts of laminated granules appear primarily in cell processes, probably of pinealocytes. Isolated granules also occur in the varicosities of axons. The granules encountered here are most likely secretory granules.Dedicated to Professor Bargmann on his 65th birthday.  相似文献   

7.
The innervation of the dorsal aorta and renal vasculature in the toad (Bufo marinus) has been studied with both fluorescence and ultrastructural histochemistry. The innervation consists primarily of a dense plexus of adrenergic nerves associated with all levels of the preglomerular vasculature. Non-adrenergic nerves are occasionally found in the renal artery, and even more rarely near the afferent arterioles. Many of the adrenergic nerve profiles in the dorsal aorta and renal vasculature are distinguished by high proportions of chromaffin-negative, large, filled vesicles. Close neuromuscular contacts are common in both the renal arteries and afferent arterioles. Possibly every smooth muscle cell in the afferent arterioles is multiply innervated. The glomerular capillaries and peritubular vessels are not innervated, and only 3-5% of efferent arterioles are accompanied by single adrenergic nerve fibres. Thus, nervous control of glomerular blood flow must be exerted primarily by adrenergic nerves acting on the preglomerular vasculature. The adrenergic innervation of the renal portal veins and efferent renal veins may play a role in regulating peritubular blood flow. In addition, glomerular and postglomerular control of renal blood flow could be achieved by circulating agents acting via contractile elements in the glomerular mesangial cells, and in the endothelial cells and pericytes of the efferent arterioles. Some adrenergic nerve profiles near afferent arterioles are as close as 70 nm to distal tubule cells, indicating that tubular function may be directly controlled by adrenergic nerves.  相似文献   

8.
Summary The innervation and myocardial cells of the human atrial appendage were investigated by means of immunocytochemical and ultrastructural techniques using both tissue sections and whole mount preparations. A dense innervation of the myocardium, blood vessels and endocardium was revealed with antisera to general neuronal (protein gene product 9.5 and synaptophysin) and Schwann cell markers (S-100). The majority of nerve fibres possessed neuropeptide Y immunoreactivity and were found associated with myocardial cells, around small arteries and arterioles at the adventitial-medial border and forming a plexus in the endocardium. Subpopulations of nerve fibres displayed immunoreactivity for vasoactive intestinal polypeptide, somatostatin, substance P and calcitonin gene-related peptide. In whole-mount preparations of endocardium, substance P and calcitonin gene-related peptide immunoreactivities were found to coexist in the same varicose nerve terminals. Ultrastructural studies revealed the presence of numerous varicose terminals associated with myocardial, vascular smooth muscle and endothelial cells. Neuropeptide Y immunoreactivity was localised to large electron-dense secretory vesicles in nerve terminals which also contained numerous small vesicles. Atrial natriuretic peptide immunoreactivity occurred exclusively in myocardial cells where it was localised to large secretory vesicles. The human atrial appendage comprises a neuroendocrine complex of peptidecontaining nerves and myocardial cells producing ANP.  相似文献   

9.
The immunoreactivity of vasoactive intestinal polypeptide (VIP) was localized at the light-microscopical level in cryostat sections using a peroxidase-antiperoxidase technique or at the electron-microscopical (EM) level in glutaraldehyde-fixed, resin-embedded sections, using an immunogold technique, of tissue samples from the genital tract of cycling pigs. X-ray micro-analysis of glutaraldehyde-dichromate-fixed sections was used to discriminate noradrenaline-containing nerves. VIP immunoreactivity was localized to nerves associated to some degree with epithelial cells, blood vessels and non-vascular smooth muscle. VIP nerves were most concentrated in the cervix and the uterus, localized in the submucosa, the muscle layers and the adventitia. Nerve profiles were also seen accompanying blood vessels in the endometrium, running close to the uterine glands. In the oviduct, VIP nerves had a similar localization though less dense. At the EM level, the immunogold localization confirmed the above-mentioned results, VIP being localized in synaptic vesicles. Nerve terminals without VIP reactivity had an EM appearance of cholinergic nerve terminals or were chrome positive (noradrenaline-containing) at X-ray micro-analysis, thus being adrenergic terminals. It is concluded that the porcine female genital tract is well innervated, along with adrenergic and cholinergic components, by VIP-containing nerves.  相似文献   

10.
In mammals, much is understood about the endothelial and neural NO control mechanisms in the vasculature. In contrast, NO control of blood vessels in lower vertebrates is poorly understood, with the majority of research focusing on the presence of an endothelial NO system; however, its presence remains controversial. This study examined the mechanisms by which NO regulates the large blood vessels of non-mammalian vertebrates. In all species examined, the arteries and veins contained a plexus of NOS-positive perivascular nerves that included nerve bundles and fine, varicose nerve terminals. However, in the large arteries and veins of various species of fishes and amphibians, no anatomical evidence was found for endothelial NOS using both NADPH-diaphorase and eNOS immunohistochemistry. In contrast, perinuclear NOS staining was readily apparent in blue-tongue lizard, pigeon and rat, which suggested that eNOS first appeared in reptiles. Physiological analysis of NO signalling in the vascular smooth muscle of short-finned eel and cane toad could not find any evidence for endothelial NO signalling. In contrast, it appears that activation of the nitrergic vasomotor nerves is responsible for NO control of the blood vessels.  相似文献   

11.
The presence and pattern of coexistence of some biologically active substances in nerve fibres supplying the mammary gland in the immature pig were studied using immunohistochemical methods. The substances studied included: protein gene product 9.5 (PGP), tyrosine hydroxylase (TH), somatostatin (SOM), neuropeptide Y (NPY), galanin (GAL), calcitonin gene-related peptide (CGRP) and substance P (SP). The mammary gland was found to be richly supplied by PGP-immunoreactive (PGP-IR) nerve fibres that surrounded blood vessels, bundles of smooth muscle cells and lactiferous ducts. The vast majority of these nerves also displayed immunoreactivity to TH. Immunoreactivity to SOM was observed in a moderate number of nerve fibres which were associated with smooth muscles of the nipple and blood vessels. Immunoreactivity to NPY occurred in many nerve fibres associated with blood vessels and in single nerves supplying smooth muscle cells. Solitary GAL-IR axons supplied mostly blood vessels. Many CGRP-IR nerve fibres were associated with both blood vessels and smooth muscles. SP-IR nerve fibres richly supplied blood vessels only. The colocalization study revealed that SOM, NPY and GAL partly colocalized with TH in nerve fibres supplying the porcine mammary gland.  相似文献   

12.
Summary The fine structure of the preterminal nerve fibers of the rabbit myometrial smooth muscle was studied using potassium permanganate fixation or glutaraldehyde fixation with postosmification. The preterminal fibers were mostly formed by 2–10 axons enveloped by Schwann cells. Two kinds of axons and axon terminals were found. (1) Adrenergic axons, which contained many small, granular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å) which represented ca. 2% of the total count of the vesicles. (2) Nonadrenergic axons, which contained small agranular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å). Both types of axons formed preterminal varicosities along their course. The real terminal varicosities, representing the anatomical end of the axons, were usually larger than the preterminal ones and showed close contact to the plasma membranes of the smooth muscle cells. Both adrenergic and nonadrenergic terminals were found close to the smooth muscle cells, but a gap of at least 2000 Å was always present between the two cell membranes. The axons and preterminal varicosities of both types of nerves were in intimate contact with each other within the preterminal nerve fiber. Axo-axonal interactions between the two types of axons are possible in the rabbit myometrium. The relative proportion of the nonadrenergic axons from the total was about one fourth.  相似文献   

13.
Furness  J. B.  Costa  M.  Emson  P. C.  Håkanson  R.  Moghimzadeh  E.  Sundler  F.  Taylor  I. L.  Chance  R. E. 《Cell and tissue research》1983,234(1):71-92
Pancreatic polypeptide-like immunoreactivity (PPLI) has been localized in nerves of the guinea-pig stomach and intestine with the use of antibodies raised against avian, bovine and human pancreatic polypeptide (PP), the C-terminal hexapeptide of mammalian PP, and against the related peptide, NPY. Each of the antibodies revealed the same population of neurones. Reactive cell bodies were found in both myenteric (5% of all neurones) and submucous ganglia (26% of all neurones) of the small intestine, and varicose processes were observed in the myenteric plexus, circular muscle, mucosa and around arterioles. The nerves were unaffected by bilateral subdiaphragmatic truncal vagotomy, but the staining of the periarterial nerves disappeared after treatment of animals with reserpine or 6-hydroxydopamine and was also absent after mesenteric nerves had been cut and allowed to degenerate. Vascular nerves showing immunoreactivity for dopamine beta-hydroxylase and PPLI had the same distribution. It is concluded that PPLI is located in periarterial noradrenergic nerves. However, other noradrenergic nerves in the intestine do not show PPLI, and PPLI also occurs in nerves that are not noradrenergic. Analysis of changes in the distribution of terminals after microsurgical lesions of pathways in the small intestine showed that processes of myenteric PP-nerve cells provide terminals in the underlying circular muscle and in myenteric ganglia up to about 2 mm more anal. Submucous PP-cell bodies provide terminals to the mucosa.  相似文献   

14.
The innervation of the pineal organ was studied in 26 avian species under particular consideration of comparative aspects. A population of nerve cells and their pinealofugal (afferent) fiber systems were stained by means of the acetylcholinesterase method, while catecholamine-containing pinealopetal (efferent) fibers were demonstrated with the use of the glyoxylic acid method. Afferent axons were mainly found in the postero-proximal portion of the organ, and the patterns of their distribution were classified into three groups according to the characteristic densities of the reaction product. The number of acetylcholinesterase-positive neurons in the avian pineal organs examined in this study varied extremely from species to species, ranging from 0 to 362. Catecholamine-containing nerve fibers penetrating the antero-lateral walls of the pineal follicles accompanied blood vessels and were arranged more densely in the distal portion of the organ, in contrast to the distribution of the acetylcholinesterase-positive nerve fibers. Three-dimensional reconstruction of the distributional patterns of both types of neural projections was performed for the pineal organ of every avian species examined. In avian species possessing a relatively conspicuous afferent projection, such as Passeriformes, Nycticorax, and Milvus, terminals of catecholamine-containing nerve fibers were observed exclusively in the interfollicular and perivascular tissues. In Galliformes, which display only few pineal afferents, catecholamine-containing fibers terminate not only in the interfollicular space, but also in the neuroepithelial parenchyma. The regional differences in the innervation in the avian pineal organ suggest that the pinealocytes ranging from more sensory-like to more secretory-like elements are arranged in a mosaic-like pattern.  相似文献   

15.
Summary Monoaminergic nerve fibers were studied in the pineal organ of the monkey, Macaca fuscata, by use of fluorescence and immunohistochemical procedures. Abundant formations of noradrenergic nerve fibers were observed in the pineal organ. They entered the parenchyma in the form of several coarse bundles via the capsule in the distal portion of the organ and spread throughout the organ after branching into smaller units. The density of the autonomic innervation decreased gradually toward the proximal portion of the organ. In the distal portion, numerous nerve fibers formed perivascular plexuses around the blood vessels and some fibers ran as bundles unrelated to the blood vessels in the stroma. Fine varicose fibers and bundles derived from these plexuses penetrated among the pinealocytes. However, only a few intraparenchymal fluorescent fibers were detected in the proximal third of the gland. With the use of serotonin antiserum serotonin-immunoreactive nerve fibers were clearly restricted to the ventroproximal part of the pineal organ. Although the somata of the pinealocytes showed intense immunoreactivity, their processes were not stained. In one exceptional case, clusters of pinealocytes displaying very intense immunoreactivity were found in an area extending from the distal margin of the ventral portion of the pineal stalk to the proximal portion of the pineal organ proper; these cells were bipolar or multipolar and endowed with well-stained processes.  相似文献   

16.
Summary Cat muscle spindles were examined histochemically in serial transverse sections of tenuissimus muscles stained for ATPase, NADH-TR and ChE alternating sequentially. Motor nerve terminals on nuclear bag1, bag2 and nuclear chain intrafusal muscle fibers were identified in periodic sections stained for ChE. Intrafusal fiber regions that carried ChE-active areas were then examined in staining for NADH-TR. The motor endings on the three types of intrafusal fiber differed in their apparent histochemical content of both ChE and NADH-TR. The observations suggest that functional differences may exist among motor nerve terminals on the various intrafusal fiber types.  相似文献   

17.
Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology.  相似文献   

18.
The display of the two distinct intermediate filament proteins, desmin and vimentin, in rat vascular smooth muscle tissue was studied by immunofluorescence microscopy on frozen sections of aorta and other blood vessels. Vascular smooth muscle cells present in these vessels always appeared rich in vimentin. However, staining of sections covering six distinct but contiguous parts of the aorta showed that the number of desmin containing cells was low distal to the truncus brachiocephalicus, but increases until in distal parts of the aorta and in the arteria iliaca communis almost all cells appear positive for desmin. Thus blood vessels show heterogeneity of intermediate filament expression not only in cross-section but can also display heterogeneity along their length. Muscular arteries such as the renal artery and the arteria femoralis, as well as arterioles and veins including the vena jugularis and the vena cava also contain desmin. Thus it may be that low numbers of desmin-positive cells are typical of elastic arteries, while muscular arteries and other blood vessels are characterized by large numbers of desmin-positive cells. We discuss whether desmin-positive and desmin-negative vascular smooth muscle cells may perform different functions and raise the possibility that desmin expression may coincide with the turn on of a specially regulated contractility program.  相似文献   

19.
Summary The ability of the kidney to excrete sodium appears to depend on release of dopamine from intrarenal sources. In the present study, we have used immunohistochemistry to examine the possibility that renal dopaminergic nerves constitute one of these sources. We found that the sympathetic axons supplying cortical structures in human kidney contain tyrosine hydroxylase-like immunoreactivity but lack DOPA decarboxylase-like immunoreactivity. By contrast, the vasa recta arterioles of the renal medulla are supplied by varicose tyrosine hydroxylase-positive nerve fibres, some of which also contain DOPA decarboxylase. As DOPA decarboxylase has been demonstrated in other situations to be a selective marker for dopaminergic terminal axons, our results suggest the innervation of renal medullary blood vessels in man by both noradrenergic and dopaminergic sympathetic nerves.  相似文献   

20.
The ability of the kidney to excrete sodium appears to depend on release of dopamine from intrarenal sources. In the present study, we have used immunohistochemistry to examine the possibility that renal dopaminergic nerves constitute one of these sources. We found that the sympathetic axons supplying cortical structures in human kidney contain tyrosine hydroxylase-like immunoreactivity but lack DOPA decarboxylase-like immunoreactivity. By contrast, the vasa recta arterioles of the renal medulla are supplied by varicose tyrosine hydroxylase-positive nerve fibres, some of which also contain DOPA decarboxylase. As DOPA decarboxylase has been demonstrated in other situations to be a selective marker for dopaminergic terminal axons, our results suggest the innervation of renal medullary blood vessels in man by both noradrenergic and dopaminergic sympathetic nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号