首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jia S  Peng J  Gao B  Chen Z  Zhou Y  Fu Q  Wang H  Zhan L 《PloS one》2011,6(10):e26414
The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.  相似文献   

2.
3.
A new reporter system has been developed for quantifying gene expression in the yeast Saccharomyces cerevisiae. The system relies on two different reporter genes, Renilla and firefly luciferase, to evaluate regulated gene expression. The gene encoding Renilla luciferase is fused to a constitutive promoter (PGK1 or SPT15) and integrated into the yeast genome at the CAN1 locus as a control for normalizing the assay. The firefly luciferase gene is fused to the test promoter and integrated into the yeast genome at the ura3 or leu2 locus. The dual luciferase assay is performed by sequentially measuring the firefly and Renilla luciferase activities of the same sample, with the results expressed as the ratio of firefly to Renilla luciferase activity (Fluc/Rluc). The yeast dual luciferase reporter (DLR) was characterized and shown to be very efficient, requiring approximately 1 minute to complete each assay, and has proven to yield data that accurately and reproducibly reflect promoter activity. A series of integrating plasmids were generated that contain either the firefly or Renilla luciferase gene preceded by a multi-cloning region in two different orientations and the three reading frames to make possible the generation of translational fusions. Additionally, each set of plasmids contains either the URA3 or LEU2 marker for genetic selection in yeast. A series of S288C-based yeast strains, including a two-hybrid strain, were developed to facilitate the use of the yeast DLR assay. This assay can be readily adapted to a high-throughput platform for studies requiring numerous measurements.  相似文献   

4.
Burbelo PD  Kisailus AE  Peck JW 《BioTechniques》2002,33(5):1044-8, 1050
We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.  相似文献   

5.
6.
将HCVIRES插入双报告基因海肾荧光素酶 (Rluc)基因和萤火虫荧光素酶 (Fluc)基因之间 ,建立了“依赖帽子的扫描机制”翻译表达Rluc ,HCVIRES调控Fluc翻译的双顺反子表达载体pCI Rluc HCVIRES Fluc ,通过酶切反应及转染HepG2细胞鉴定双荧光素酶瞬间表达活性等试验 ,证实获得了表达双荧光素酶的双顺反子载体 .并应用水压转染法将双顺反子表达质粒导入小鼠体内 ,在小鼠肝脏检测到高水平表达的Rluc和Fluc .该研究成功构建一种HCVIRES介导萤火虫荧光素酶基因表达的双顺反子载体 ,并在HepG2细胞及小鼠体内进行了瞬时表达 ,为进一步建立稳定评价靶向HCVIRES药物作用的细胞及小动物模型研究奠定了基础  相似文献   

7.
8.
9.
The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology.  相似文献   

10.
The aim of this study was to investigate and validate the use of a dual glow-signal luciferase reporter gene assay to simultaneously evaluate drug activity at two different seven-transmembrane receptor subtypes. Stable cell lines (CHO) transfected with either human corticotrophin releasing hormone 1 (hCRH1) receptors and a firefly luciferase reporter gene or hCRH2 and a Renilla luciferase reporter gene were created to provide different luciferase readouts for CRH1 and CRH2 receptors, respectively. Cells were combined for stimulation and measurement of luciferase luminescence in a 96-well plate format assay. The nonselective CRH agonists rat/human CRH and sauvagine caused concentration-dependent increases in luminescence via activation of CRH1 (firefly luciferase; pEC50 = 8.40 +/- 0.06 and 8.39 +/- 0.08, respectively, n = 8) and CRH2 (Renilla luciferase; pEC50 = 8.89 +/- 0.14 and 8.92 +/- 0.13, respectively, n = 8) receptors. The nonselective CRH antagonist astressin blocked these agonist-induced increases in luciferase at both CRH1 and CRH2 receptors. The selective CRH1 antagonist CP154,526 blocked r/hCRH- and sauvagine-induced increases in luciferase at CRH1 receptors only. These data report the expected pharmacology for CRH1 and CRH2 receptors. This assay enabled two receptor subtypes to be studied simultaneously in the same 96-well plate and generated robust data with low variability. It has the potential advantage of significant time and cost savings, with application to both basic research and compound screening.  相似文献   

11.
目的:确立基于Gal4/vp16-UAS和双荧光素酶报告基因系统检测γ-分泌酶切割淀粉样前体蛋白活性的方法。方法:将插入上游激活序列(SAS)和萤火虫荧光素酶报告基因的质粒MH100,嵌舍酵母活性转录因子(Gal4)、单纯疱疹病毒蛋白(VP16)和γ-分泌酶切割位点的质粒C99-GVP,以度海肾荧光素酶质粒pRL—CMV,用脂质体转染法转入稳定表达淀粉样前体蛋白C末端的人神经母细胞瘤细胞(SH—SYSY),用免疫沉淀Western blot分析法检测β-淀粉样蛋白(邶)的生成,利用Gal4/vp16-UAS和双荧光素酶报告基因系统测定荧光素酶报告基因的表达。结果:免疫沉淀Westem blot分析表明A(的生成在γ-分泌酶激活荆神经节苷脂GM1作用下升高并呈剂量依赖性,同时双荧光素酶法检测γ-分泌酶活性也同步升高。在γ-分泌酶抑制荆作用下Aβ的产生呈荆量依赖性的减少,同时γ-分泌酶活性也同步降低。结论:基于Gal4/vp16-UAS和双荧光素酶报告基因系统检测γ-分泌酶活性的方法有效可靠,是一种敏感、定量的检测方法。  相似文献   

12.
Reporter assays that use luciferase are widely employed for monitoring cellular events associated with gene expression. In general, firefly luciferase and Renilla luciferase are used for monitoring single gene expression. However, the expression of more than one gene cannot be monitored simultaneously by this system because one of the two reporting luciferases must be used as an internal control. We have developed a novel reporter assay system in which three luciferases that emit green, orange, and red light with a single substrate are used as reporter genes. The activities of the luciferases can be measured simultaneously and quantitatively with optical filters. This system enables us to simply and rapidly monitor multiple gene expressions in a one-step reaction.  相似文献   

13.
We developed a split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. In this assay, the N- and C-terminal fragments of Renilla reniforms luciferase are translationally fused to bait and prey proteins, respectively. When the proteins interact, split luciferase becomes activated and emits luminescence that can be measured by a microplate luminometer. Split luciferase activity was measured by first transforming protoplasts with a DNA vector in a 96-well plate. DNA vector expressing both bait and prey genes was constructed through two independent in vitro DNA recombinant reactions, Gateway and Cre-loxP. As proof of concept, we detected the protein-protein interactions between the nuclear histones 2A and 2B, as well as between membrane proteins SYP (syntaxin of plant) 51 and SYP61, in Arabidopsis protoplasts.  相似文献   

14.
Green bioluminescence in Renilla species is generated by a approximately 100% efficient RET (resonance energy transfer) process that is caused by the direct association of a blue-emitting luciferase [Rluc (Renilla luciferase)] and an RGFP (Renilla green fluorescent protein). Despite the high efficiency, such a system has never been evaluated as a potential reporter of protein-protein interactions. To address the question, we compared and analysed in mammalian cells the bioluminescence of Rluc and RGFP co-expressed as free native proteins, or as fused single-chain polypeptides and tethered partners of self-assembling coiled coils. Here, we show that: (i) no spontaneous interactions generating detectable BRET (bioluminescence RET) signals occur between the free native proteins; (ii) high-efficiency BRET similar to that observed in Renilla occurs in both fusion proteins and self-interacting chimaeras, but only if the N-terminal of RGFP is free; (iii) the high-efficiency BRET interaction is associated with a dramatic increase in light output when the luminescent reaction is triggered by low-quantum yield coelenterazine analogues. Here, we propose a new functional complementation assay based on the detection of the high-efficiency BRET signal that is generated when the reporters Rluc and RGFP are brought into close proximity by a pair of interacting proteins to which they are linked. To demonstrate its performance, we implemented the assay to measure the interaction between GPCRs (G-protein-coupled receptors) and beta-arrestins. We show that complementation-induced BRET allows detection of the GPCR-beta-arrestin interaction in a simple luminometric assay with high signal-to-noise ratio, good dynamic range and rapid response.  相似文献   

15.
Mouse models of herpes simplex virus type 1 (HSV-1) infection provide significant insights into viral and host genes that regulate disease pathogenesis, but conventional methods to determine the full extent of viral spread and replication typically require the sacrifice of infected animals. To develop a noninvasive method for detecting HSV-1 in living mice, we used a strain KOS HSV-1 recombinant that expresses firefly (Photinus pyralis) and Renilla (Renilla reniformis) luciferase reporter proteins and monitored infection with a cooled charge-coupled device camera. Viral infection in mouse footpads, peritoneal cavity, brain, and eyes could be detected by bioluminescence imaging of firefly luciferase. The activity of Renilla luciferase could be imaged after direct administration of substrate to infected eyes but not following the systemic delivery of substrate. The magnitude of bioluminescence from firefly luciferase measured in vivo correlated directly with input titers of recombinant virus used for infection. Treatment of infected mice with valacyclovir, a potent inhibitor of HSV-1 replication, produced dose-dependent decreases in firefly luciferase activity that correlated with changes in viral titers. These data demonstrate that bioluminescence imaging can be used for noninvasive, real-time monitoring of HSV-1 infection and therapy in living mice.  相似文献   

16.
Multiple assay formats have been developed for the pharmacological characterization of G-protein-coupled receptors (GPCRs) and for screening orphan receptors. However, the increased pace of target identification and the rapid expansion of compound libraries present the need to develop novel assay formats capable of screening multiple GPCRs simultaneously. To address this need, the authors have developed a generic dual-reporter gene assay that can detect ligand activity at 2 GPCRs within the same assay. Two stable HEK293 cell lines were generated expressing either a firefly (Photinus) luciferase gene under the control of multiple cAMP-response elements (CREs) or a Renilla luciferase gene under the control of multiple 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs). Coseeded reporter cells were used to assess ligand binding activity at both Galphas-and Galphaq-coupled receptors. By selectively coexpressing receptors with a chimeric G-protein, agonist activity was assessed at Galphai/o-coupled receptors in combination with either Galphas-or Galphaq-coupled receptors. The dual-reporter gene assay was shown to be capable of simultaneously performing duplexed screens for a variety of agonist and/or antagonist combinations. The data generated from the duplexed reporter assays were pharmacologically relevant, and Z' factor analysis indicated the suitability of both agonist and antagonist screens for use in high-throughput screening.  相似文献   

17.
本研究报道了微小RNA靶分子鉴定及其活性分析的内参内置型双荧光素酶单载体与其应用.利用非连接酶依赖的基因克隆技术,借助一步式二元搭桥耦联长距离PCR及大肠杆菌体内同源重组方法,将萤火虫荧光素酶基因(Firefly luc)融合到pRL-TK载体的海肾荧光素酶基因(Renilla luc)和氨苄青霉素抗性基因之间,构建为两种荧光素酶基因表达框并置的单载体报告系统,命名为pMiSensor. 在海肾荧光素酶基因的3′非翻译区引入多克隆位点Xba I和Apa I,便于克隆目的基因的3′UTR.海肾荧光素酶为报告基因,萤火虫荧光素酶为内参基因.多种哺乳动物细胞系的转染实验证实,pMiSensor可同时有效表达两种报告基因,其酶活显示出宽广的线性范围.通过构建pMiSensor-CCNE1报告载体,证明pMiSensor能够重现miR16对细胞周期蛋白CCNE1的调控作用.通过转染miR16抑制剂,证明pMiSensor-CCNE1可作为一种灵敏的生物感应器,探测细胞内微小RNA的活性变化.该双荧光素酶单载体具有重复性高、操作简便、定量准确的优点,适用于微小RNA靶分子的筛选、鉴定和确认, 也适用于在细胞水平定量分析微小RNA的活性变化.  相似文献   

18.
19.
A new in vivo assay system has been developed to study programmed frameshifting in the yeast Saccharomyces cerevisiae. Frameshift signals are inserted between the Renilla and firefly luciferase reporter genes contained in a yeast expression vector and the two activities are directly measured from cell lysates in one tube. Similar to other bicistronic reporter systems, this one allows the efficient estimation of recoding efficiency by comparison of the normalized activity ratios from each luciferase protein. The assay system has been applied to HIV-1 and L-A directed programmed -1 frameshifting and Ty1 and Ty3 directed +1 frameshifting. The assay system is amenable to high-throughput screening.  相似文献   

20.
The potential genotoxicity of drug candidates is a serious concern during drug development. Therefore, it is important to assess the potential genotoxicity and mutagenicity of a compound early in the discovery phase of drug development. AMES Salmonella assay is the most widely used assay for the assessment of mutagenicity and genotoxicity. However, the AMES assay is not readily adaptable to highthroughput screening and several strains of Salmonella must be employed to ensure that different types of DNA damage can be studied. Therefore, an additional robust highthroughput genotoxicity screen would be of significant value in the early detection and elimination of genotoxicity. The complexity of DNA damage requires numerous cellular pathways, thus using single model organism to predict genotoxicity in early stage is challenging. Another critical component of such screens is that they incorporate the capability of metabolic activation to ensure that no genotoxic metabolites are generated. We have developed a novel highthroughput reporter assay for DNA repair that detects genotoxicity, and which incorporates metabolic activation. The assay has a low compound requirement as compared to Ames, and relies upon two different reporter genes cotransfected into a yeast strain. The gene encoding Renilla luciferase is fused to the constitutive 3-phosphoglycerate kinase (PGK1) promoter and integrated into the yeast genome to provide a control for cell numbers. The firefly luciferase gene is fused to the RAD51 (bacterial RecA homolog) promoter and used to report an increase in DNA repair activity. A dual luciferase assay is performed by measuring the firefly and Renilla luciferase activities in the same sample. The result is expressed as the ratio of the two luciferase activities; changes from the base level (control) are interpreted as induction of the RAD51 promoter and evidence of DNA repair activity in eukaryote cells due to DNA damage. The yeast dual luciferase reporter has been characterized with and without S-9 activation using positive and negative control agents. This assay is efficient, requires little time and low amounts of compound. The assay is compatible with metabolic activation, adaptable to a highthroughput platform, and yields data that accurately and reproducibly detects DNA damage. Whereas the normal yeast cell wall, plasma membrane composition and the presence of active transporters can prevent the entry or persistence of some compounds internally in yeast cells, our assay did show concordance with regulatory mutagenicity assays, many of which require metabolic activation and are poorly detected by bacterial mutagenicity assays. Although there were false negative results, in our hands this assay performs as well as or better than other commercially available genetox assays. Furthermore, the RAD51 gene is strongly inducible by homologous intrachromosomal recombination; thus this assay may provide a means to detect clastogens. The RAD51 promoter fused dual luciferase assay represents a valuable addition to the armamentarium for the early detection of genotoxic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号