首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism of this interaction and the consequences for its likely physiological role. The oxygen reactive site in cytochrome oxidase contains both heme iron (a3) and copper (CuB) centers. NO inhibits cytochrome oxidase in both an oxygen-competitive (at heme a3) and oxygen-independent (at CuB) manner. Before inhibition of oxygen consumption, changes can be observed in enzyme and substrate (cytochrome c) redox state. Physiological consequences can be mediated either by direct "metabolic" effects on oxygen consumption or via indirect "signaling" effects via mitochondrial redox state changes and free radical production. The detailed kinetics suggest, but do not prove, that cytochrome oxidase can be a target for NO even under circumstances when guanylate cyclase, its primary high affinity target, is not fully activated. In vivo organ and whole body measures of NO synthase inhibition suggest a possible role for NO inhibition of cytochrome oxidase. However, a detailed mapping of NO and oxygen levels, combined with direct measures of cytochrome oxidase/NO binding, in physiology is still awaited. mitochondria; cytochrome oxidase  相似文献   

3.
Noncovalent bonding interactions of nitric oxide (NO) with human serum albumin (HSA), human hemoglobin A, bovine myoglobin, and bovine cytochrome c oxidase (CcO) have been explored. The anesthetic nitrous oxide (NNO) occupies multiple sites within each protein, but does not bind to heme iron. Infrared (IR) spectra of NNO molecules sequestered within albumin, with NO present, support the binding of NO and NNO to the same sites with comparable affinities. Perturbations of IR spectra of the Cys(34) thiol of HSA indicate NO, NNO, halothane, and chloroform can induce similar changes in protein structure. Experiments evaluating the relative affinities of binding of NO and carbon monoxide (CO) to iron(II) sites of the hemeproteins led to evidence of NO binding to noniron, nonsulfur sites as well. With HbA, IR spectra of cysteine thiols and/or the iron(II) N-O stretching region denote changes in protein structure due to NO, NNO, or CO occupying noniron sites with an order of decreasing affinities of NO > NNO > CO. Loss of NO from some, not all, noniron sites in hemeproteins is very slow (t(1/2) approximately hours). These findings provide examples in which NO and anesthetics alter the structure and properties of protein similarly, and support the hypothesis that some physiological effects of NO (and possibly CO) result from anesthetic-like noncovalent bonding to sites within protein or other tissue components. Such bonding may be involved in mechanisms for control of oxygen transport, mitochondrial respiration, and activation of soluble guanylate cyclase by NO.  相似文献   

4.
Nitric oxide (NO) is the physiologically relevant activator of the mammalian hemoprotein soluble guanylate cyclase (sGC). The heme cofactor of α1β1 sGC has a high affinity for NO but has never been observed to form a complex with oxygen. Introduction of a key tyrosine residue in the sGC heme binding domain β1(1–385) is sufficient to produce an oxygen-binding protein, but this mutation in the full-length enzyme did not alter oxygen affinity. To evaluate ligand binding specificity in full-length sGC we mutated several conserved distal heme pocket residues (β1 Val-5, Phe-74, Ile-145, and Ile-149) to introduce a hydrogen bond donor in proximity to the heme ligand. We found that the NO coordination state, NO dissociation, and enzyme activation were significantly affected by the presence of a tyrosine in the distal heme pocket; however, the stability of the reduced porphyrin and the proteins affinity for oxygen were unaltered. Recently, an atypical sGC from Drosophila, Gyc-88E, was shown to form a stable complex with oxygen. Sequence analysis of this protein identified two residues in the predicted heme pocket (tyrosine and glutamine) that may function to stabilize oxygen binding in the atypical cyclase. The introduction of these residues into the rat β1 distal heme pocket (Ile-145 → Tyr and Ile-149 → Gln) resulted in an sGC construct that oxidized via an intermediate with an absorbance maximum at 417 nm. This absorbance maximum is consistent with globin FeII-O2 complexes and is likely the first observation of a FeII-O2 complex in the full-length α1β1 protein. Additionally, these data suggest that atypical sGCs stabilize O2 binding by a hydrogen bonding network involving tyrosine and glutamine.  相似文献   

5.
The nitric-oxide synthase (NOS) catalyzes the oxidation of L-arginine to L-citrulline and NO through consumption of oxygen bound to the heme. Because NO is produced close to the heme and may bind to it, its subsequent role in a regulatory mechanism should be scrutinized. We therefore examined the kinetics of NO rebinding after photodissociation in the heme pocket of human endothelial NOS by means of time-resolved absorption spectroscopy. We show that geminate recombination of NO indeed occurs and that this process is strongly modulated by L-Arg. This NO rebinding occurs in a multiphasic fashion and spans over 3 orders of magnitude. In both ferric and ferrous states of the heme, a fast nonexponential picosecond geminate rebinding first takes place followed by a slower nanosecond phase. The rates of both phases decreased, whereas their relative amplitudes are changed by the presence of L-Arg; the overall effect is a slow down of NO rebinding. For the isolated oxygenase domain, the picosecond rate is unchanged, but the relative amplitude of the nanosecond binding decreased. We assigned the nanosecond kinetic component to the rebinding of NO that is still located in the protein core but not in the heme pocket. The implications for a mechanism of regulation involving NO binding are discussed.  相似文献   

6.
Although the insertion of heme into proteins enables their function in bioenergetics, metabolism, and signaling, the mechanisms and regulation of this process are not fully understood. We developed a means to study cellular heme insertion into apo-protein targets over a 3-h period and then investigated how nitric oxide (NO) released from a chemical donor (NOC-18) might influence heme (protoporphyrin IX) insertion into seven targets that present a range of protein structures, heme ligation states, and functions (three NO synthases, two cytochrome P450's, catalase, and hemoglobin). NO blocked cellular heme insertion into all seven apo-protein targets. The inhibition occurred at relatively low (nM/min) fluxes of NO, was reversible, and did not involve changes in intracellular heme levels, activation of guanylate cyclase, or inhibition of mitochondrial ATP production. These aspects and the range of protein targets suggest that NO can act as a global inhibitor of heme insertion, possibly by inhibiting a common step in the process.  相似文献   

7.
Nitric oxide (NO(*)) signaling is diverse, and involves reaction with free radicals, metalloproteins, and specific protein amino acid residues. Prominent among these interactions are the heme protein soluble guanylate cyclase and cysteine residues within several proteins such as caspases, the executors of apoptosis. Another well characterized site of NO(*) binding is the terminal complex of the mitochondrial respiratory chain, cytochrome c oxidase, although the downstream signaling effects of this interaction remain unclear. Recently, it has been recognized that the intracellular formation of hydrogen peroxide (H(2)O(2)) by controlled mechanisms contributes to what we term "redox tone," and so controls the activity and activation thresholds of redox-sensitive signaling pathways. In this hypothesis paper, it is proposed that NO(*)-dependent modulation of the respiratory chain can control the mitochondrial generation of H(2)O(2) for cell signaling purposes without affecting ATP synthesis.  相似文献   

8.
The mechanism of action of heme oxygenase-1 (HO-1) in mitochondrial oxidative stress (MOS)-mediated apoptotic tissue injury was investigated. MOS-mediated gastric mucosal apoptosis and injury were introduced in rat by indomethacin, a non-steroidal anti-inflammatory drug. Here, we report that HO-1 was not only induced but also translocated to mitochondria during gastric mucosal injury to favor repair mechanisms. Furthermore, mitochondrial translocation of HO-1 resulted in the prevention of MOS and mitochondrial pathology as evident from the restoration of the complex I-driven mitochondrial respiratory control ratio and transmembrane potential. Mitochondrial translocation of HO-1 also resulted in time-dependent inhibition of apoptosis. We searched for the plausible mechanisms responsible for HO-1 induction and mitochondrial localization. Free heme, the substrate for HO-1, was increased inside mitochondria during gastric injury, and mitochondrial entry of HO-1 decreased intramitochondrial free heme content, suggesting that a purpose of mitochondrial translocation of HO-1 is to detoxify accumulated heme. Heme may activate nuclear translocation of NF-E2-related factor 2 to induce HO-1 through reactive oxygen species generation. Electrophoretic mobility shift assay and chromatin immunoprecipitation studies indicated nuclear translocation of NF-E2-related factor 2 and its binding to HO-1 promoter to induce HO-1 expression during gastric injury. Inhibition of HO-1 by zinc protoporphyrin aggravated the mucosal injury and delayed healing. Zinc protoporphyrin further reduced the respiratory control ratio and transmembrane potential and enhanced MOS and apoptosis. In contrast, induction of HO-1 by cobalt protoporphyrin reduced MOS, corrected mitochondrial dysfunctions, and prevented apoptosis and gastric injury. Thus, induction and mitochondrial localization of HO-1 are a novel cytoprotective mechanism against MOS-mediated apoptotic tissue injury.  相似文献   

9.
Soluble guanylate cyclase (sGC) is a nitric oxide (NO) sensing hemoprotein that has been found in eukaryotes from Drosophila to humans. Prokaryotic proteins with significant homology to the heme domain of sGC have recently been identified through genomic analysis. This family of heme proteins has been named the H-NOX domain, for Heme-Nitric oxide/OXygen binding domain. The key observation from initial studies in this family is that some members, those proteins from most eukaryotes and facultative aerobic prokaryotes, bind NO in a five-coordinate heme complex, but do not bind oxygen (O(2)), the same ligand binding characteristics as sGC. H-NOX family members from obligate aerobic prokaryotes bind O(2) and NO in six-coordinate complexes, similar to the globins and other O(2)-sensing heme proteins. The molecular factors that contribute to these differences in ligand specificity, within a family of sequence related proteins, are the subject of this review.  相似文献   

10.
Mammalian mitochondrial cytochrome c interacts with cardiolipin to form a complex (cyt. c/CL) important in apoptosis. Here we show that this interaction leads to structural changes in ferrocytochrome c that leads to an open coordinate site on the central iron, resulting from the dissociation of the intrinsic methionine residue, where NO can rapidly bind (k = 1.2 × 107 m−1 s−1). Accompanying NO binding, the proximal histidine dissociates leaving the heme pentacoordinate, in contrast to the hexacoordinate nitrosyl adducts of native ferrocytochrome c or of the protein in which the coordinating methionine is removed by chemical modification or mutation. We present the results of stopped-flow and photolysis experiments that show that following initial NO binding to the heme, there ensues an unusually complex set of kinetic steps. The spectral changes associated with these kinetic transitions, together with their dependence on NO concentration, have been determined and lead us to conclude that NO binding to cyt. c/CL takes place via an overall scheme comparable to that described for cytochrome c′ and guanylate cyclase, the final product being one in which NO resides on the proximal side of the heme. In addition, novel features not observed before in other heme proteins forming pentacoordinate nitrosyl species, include a high yield of NO escape after dissociation, rapid (<1 ms) dissociation of proximal histidine upon NO binding and its very fast binding (60 ps) after NO dissociation, and the formation of a hexacoordinate intermediate. These features all point at a remarkable mobility of the proximal heme environment induced by cardiolipin.  相似文献   

11.
Nitric oxide (NO) has been reported to modulate the oxygen affinity of blood from sickle cell patients (SS), but not that of normal adult blood (AA), with little or no heme oxidation. However, we had found that the NO donor compounds 2-(N, N-diethylamino)-diazenolate-2-oxide (DEANO) and S-nitrosocysteine (CysNO) caused increased oxygen affinity of red cells from both AA and SS individuals and also caused significant methemoglobin (metHb) formation. Rapid kinetic experiments in which HbA(0), AA, or SS erythrocytes were mixed with CysNO or DEANO showed biphasic time courses indicative of initial heme oxidation followed by reductive heme nitrosylation, respectively. Hemolysates treated with CysNO showed by electrospray mass spectrometry a peak corresponding to a 29 mass unit increase (consistent with NO binding) of both the beta(A) and beta(S) chains but not of the alpha chains. Therapeutic use of NO in sickle cell disease may ultimately require further optimization of these competing reactions, i.e., heme reactivity (nitrosylation or oxidation) versus direct S-nitrosation of hemoglobin on the beta-globin.  相似文献   

12.
Berka V  Tsai AL 《Biochemistry》2000,39(31):9373-9383
Endothelial nitric oxide synthase (eNOS) is a self-sufficient P450-like enzyme. A P450 reductase domain is tethered to an oxygenase domain containing the heme, the substrate (L-arginine) binding site, and a cofactor, tetrahydrobiopterin (BH(4)). This "triad", located at the distal heme pocket, is the center of oxygen activation and enzyme catalysis. To probe the relationships among these three components, we examined the binding kinetics of three different small heme ligands in the presence and absence of either L-arginine, BH(4), or both. Imidazole binding was strictly competitive with L-arginine, indicating a domain overlap. BH(4) had no obvious effect on imidazole binding but slightly increased the k(on) for L-arginine. L-Arginine decreased the k(on) and k(off) for cyanide by two orders, indicating a "kinetic obstruction" mechanism. BH(4) slightly enhanced cyanide binding. Nitric oxide (NO) binding kinetics were more complex. Increasing the L-arginine concentration decreased the NO binding affinity at equilibrium. In both BH(4)-abundant and BH(4)-deficient eNOS, half of the NO binding sites showed a sizable decrease of the binding rate by L-arginine, with the rate of NO binding at the other half of the sites remaining essentially unaltered by L-arginine, implying that the two heme centers in the eNOS dimer are functionally distinct.  相似文献   

13.
Factors which govern transnitrosation reactions between hemoglobin (Hb) and low molecular weight thiols may define the extent to which S-nitrosated Hb (SNO-Hb) plays a role in NO in the control of blood pressure and other NO-dependent reactions. We show that exposure to S-nitrosylated cysteine (CysNO) produces equivalent levels of SNO-Hb for Hb A(0) and sickle cell Hb (Hb S), although these proteins differ significantly in the electron affinity of their heme groups as measured by their anaerobic redox potentials. Dolphin Hb, a cooperative Hb with a redox potential like that of Hb S, produces less SNO-Hb, indicating that steric considerations outweigh effects of altered electron affinity at the active-site heme groups in control of SNO-Hb formation. Examination of oxygen binding at 5-20 mM heme concentrations revealed increases due to S-nitrosation in the apparent oxygen affinity of both Hb A(0) and Hb S, similar to increases seen at lower heme concentrations. As observed at lower heme levels, deoxygenation is not sufficient to trigger release of NO from SNO-Hb. A sharp increase in apparent oxygen affinity occurs for unmodified Hb S at concentrations above 12.5 mM, its minimum gelling concentration. This affinity increase still occurs in 30 and 60% S-nitrosated samples, but at higher heme concentration. This oxygen binding behavior is accompanied by decreased gel formation of the deoxygenated protein. S-nitrosation is thus shown to have an effect similar to that reported for other SH-group modifications of Hb S, in which R-state stabilization opposes Hb S aggregation.  相似文献   

14.
Nitric oxide synthases (NOSs) are heme proteins that catalyze the formation of nitric oxide (NO) from L-arginine and oxygen in a sequential two-step process. Three structurally similar isoforms have been identified that deliver NO to different tissues for specific functions. An understanding of the interactions of ligands with the protein is essential to determine the mechanism of catalysis, the design of inhibitors and the differential auto-inhibitory regulation of the enzymatic activity of the isoforms due to the binding of NO to the heme. Ligand-protein interactions in the three isoforms revealed by resonance Raman scattering studies are reviewed in this article. The CO-related modes in the CO-bound ferrous enzyme are sensitive to the presence of substrate, either L-arginine or N-hydroxy-L-arginine, in the distal pocket, but insensitive to the presence of the tetrahydrobiopterin (H4B) cofactor. In contrast, when NO is coordinated to the ferric heme, the NO is sensitive to the substrate only when H4B is present. Furthermore, in the NO-bound ferric enzyme, the addition of H4B induces a large heme distortion that may modulate heme reduction and thereby regulate the NO auto-inhibitory process. In the metastable O2-bound enzyme, L-arginine binding causes the appearance of a shoulder on the O-O stretching mode, suggesting a specific interaction of the heme-bound dioxygen with the bound-substrate that may be crucial for the oxygenation reaction of the substrate during the catalytic turn-over. It is postulated that spectroscopic differences in the oxy-complex are a consequence of the degree of protonation of the proximal cysteine ligand on the heme. Resonance Raman studies of NOSs expand our understanding of the mechanistic features of this important family of enzymes.  相似文献   

15.
Nienhaus K  Nienhaus GU 《IUBMB life》2007,59(8-9):490-497
Neuroglobin is a small globin that plays an important role in the protection of brain neurons from ischemic and hypoxic injuries. The molecular mechanisms by which Ngb performs its physiological function are still under debate. Suggestions include oxygen storage and delivery, scavenging of NO and/or reactive oxygen species, oxygen sensing and signal transduction. In recent years, the molecular structures of Ngb with carbon monoxide bound to the heme iron and without an exogenous ligand have been solved, and interesting structural changes have been noticed upon ligand binding. Moreover, equilibrium and kinetic properties of the reactions with ligands have been examined in great detail. Here we summarize the molecular properties of Ngb and discuss them in relation to the potential physiological functions.  相似文献   

16.
Nitric oxide and mitochondrial respiration.   总被引:35,自引:0,他引:35  
Nitric oxide (NO) and its derivative peroxynitrite (ONOO-) inhibit mitochondrial respiration by distinct mechanisms. Low (nanomolar) concentrations of NO specifically inhibit cytochrome oxidase in competition with oxygen, and this inhibition is fully reversible when NO is removed. Higher concentrations of NO can inhibit the other respiratory chain complexes, probably by nitrosylating or oxidising protein thiols and removing iron from the iron-sulphur centres. Peroxynitrite causes irreversible inhibition of mitochondrial respiration and damage to a variety of mitochondrial components via oxidising reactions. Thus peroxynitrite inhibits or damages mitochondrial complexes I, II, IV and V, aconitase, creatine kinase, the mitochondrial membrane, mitochondrial DNA, superoxide dismutase, and induces mitochondrial swelling, depolarisation, calcium release and permeability transition. The NO inhibition of cytochrome oxidase may be involved in the physiological regulation of respiration rate, as indicated by the finding that isolated cells producing NO can regulate cellular respiration by this means, and the finding that inhibition of NO synthase in vivo causes a stimulation of tissue and whole body oxygen consumption. The recent finding that mitochondria may contain a NO synthase and can produce significant amounts of NO to regulate their own respiration also suggests this regulation may be important for physiological regulation of energy metabolism. However, definitive evidence that NO regulation of mitochondrial respiration occurs in vivo is still missing, and interpretation is complicated by the fact that NO appears to affect tissue respiration by cGMP-dependent mechanisms. The NO inhibition of cytochrome oxidase may also be involved in the cytotoxicity of NO, and may cause increased oxygen radical production by mitochondria, which may in turn lead to the generation of peroxynitrite. Mitochondrial damage by peroxynitrite may mediate the cytotoxicity of NO, and may be involved in a variety of pathologies.  相似文献   

17.
Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58–2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58–2667. The 2.3-Å resolution structure of BAY 58–2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58–2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58–2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58–2667 binding causes a rotation of the αF helix away from the heme pocket, as this helix is normally held in place via the inhibitory His105–heme covalent bond. The structure provides insights into how BAY 58–2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases.  相似文献   

18.
Nitric oxide (NO.) inhibits mitochondrial respiration by binding to the binuclear heme a3/CuB center in cytochrome c oxidase. However, the significance of this reaction at physiological O2 levels (5-10 microM) and the effects of respiratory state are unknown. In this study mitochondrial respiration, absorption spectra, [O2], and [NO.] were measured simultaneously at physiological O2 levels with constant O2 delivery, to model in vivo respiratory dynamics. Under these conditions NO. inhibited mitochondrial respiration with an IC50 of 0.14 +/- 0.01 microm in state 3 versus 0.31 +/- 0.04 microM in state 4. Spectral data indicate that the higher sensitivity of state 3 respiration to NO. is due to greater control over respiration by an NO.-dependent spectral species in the respiratory chain in this state. These results are discussed in the context of regulation of respiration by NO. in vivo and its implications for the control of vessel-parenchymal O2 gradients.  相似文献   

19.
Andrew CR  Green EL  Lawson DM  Eady RR 《Biochemistry》2001,40(13):4115-4122
Resonance Raman (RR) studies have been conducted on Alcaligenes xylosoxidans cytochrome c', a mono-His ligated hemoprotein which reversibly binds NO and CO but not O(2). Recent crystallographic characterization of this protein has revealed the first example of a hemoprotein which can utilize both sides of its heme (distal and proximal) for binding exogenous ligands to its Fe center. The present RR investigation of the Fe coordination and heme pocket environments of ferrous, carbonyl, and nitrosyl forms of cytochrome c' in solution fully supports the structures determined by X-ray crystallography and offers insights into mechanisms of ligand discrimination in heme-based sensors. Ferrous cytochrome c' reacts with CO to form a six-coordinate heme-CO complex, whereas reaction with NO results in cleavage of the proximal linkage to give a five-coordinate heme-NO adduct, despite the relatively high stretching frequency (231 cm(-1)) of the ferrous Fe-N(His) bond. RR spectra of the six-coordinate CO adduct indicate that CO binds to the Fe in a nonpolar environment in line with its location in the hydrophobic distal heme pocket. On the other hand, RR data for the five-coordinate NO adduct suggest a positively polarized environment for the NO ligand, consistent with its binding close to Arg 124 on the opposite (proximal) side of the heme. Parallels between certain physicochemical properties of cytochrome c' and those of heme-based sensor proteins raise the possibility that the latter may also utilize both sides of their hemes to discriminate between NO and CO binding.  相似文献   

20.
The heme of neuronal nitric-oxide synthase participates in oxygen activation but also binds self-generated NO during catalysis resulting in reversible feedback inhibition. We utilized point mutagenesis to investigate if a conserved tryptophan residue (Trp-409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Surprisingly, mutants W409F and W409Y were hyperactive compared with the wild type regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg, NADPH oxidation measurements showed that electron flux through the heme was actually slower in the Trp-409 mutants than in wild-type nNOS. However, little or no NO complex accumulated during NO synthesis by the mutants, as opposed to the wild type. This difference was potentially related to mutants forming unstable 6-coordinate ferrous-NO complexes under anaerobic conditions even in the presence of Arg and tetrahydrobiopterin. Thus, Trp-409 mutations minimize NO feedback inhibition by preventing buildup of an inactive ferrous-NO complex during the steady state. This overcomes the negative effect of the mutation on electron flux and results in hyperactivity. Conservation of Trp-409 among different NOS suggests that the ability of this residue to regulate heme reduction and NO complex formation is important for enzyme physiologic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号