首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.  Currently, there is a debate among plant ecologists on the concepts of the intensity of competition and the importance of competition, which is central to many issues of modern plant population ecology and plant community ecology.
2.  It is problematic that the current measures of intensity and importance of competition, typically, are reported as dimensionless indices because they hide the fact that both indices are functions of plant density and the level of the environmental gradient.
3.  Here, a new formulation of the concepts is suggested, which explicitly highlights the functional dependencies on plant density and the level of the environmental gradient. The new measures are a generalization of the previous indices and correspond to the previous indices in the case of a simple experimental design.
4.  The suggested measures of the intensity and importance of competition are exemplified using data from a response surface competition experiment between Agrostis capillaris and Festuca ovina along a herbicide gradient, where the expected clear effect of plant density was demonstrated.
5.   Synthesis . As the suggested measures of the intensity and importance of competition explicitly highlight the functional dependencies on plant density and the level of the environmental gradient, we think that they will help to ensure a closer connection between experimental plant ecology and the attempts to model plant populations and communities.  相似文献   

2.
3.
It is well documented that pathogens can affect the survival, reproduction, and growth of individual plants. Drawing together insights from diverse studies in ecology and agriculture, we evaluate the evidence for pathogens affecting competitive interactions between plants of both the same and different species. Our objective is to explore the potential ecological and evolutionary consequences of such interactions. First, we address how disease interacts with intraspecific competition and present a simple graphical model suggesting that diverse outcomes should be expected. We conclude that the presence of pathogens may have either large or minimal effects on population dynamics depending on many factors including the density-dependent compensatory ability of healthy plants and spatial patterns of infection. Second, we consider how disease can alter competitive abilities of genotypes, and thus may affect the genetic composition of populations. These genetic processes feed back on population dynamics given trade-offs between disease resistance and other fitness components. Third, we examine how the effect of disease on interspecific plant interactions may have potentially far-reaching effects on community composition. A host-specific pathogen, for example, may alter a competitive hierarchy that exists between host and non-host species. Generalist pathogens can also induce indirect competitive interactions between host species. We conclude by highlighting lacunae in our current understanding and suggest that future studies should (1) examine a broader taxonomic range of pathogens since work to date has largely focused on fungal pathogens; (2) increase the use of field competition studies; (3) follow interactions for multiple generations; (4) characterize density-dependent processes; and (5) quantify pathogen, as well as plant, population and community dynamics.  相似文献   

4.
5.
Asymmetric competition between plant species   总被引:6,自引:0,他引:6  
  相似文献   

6.
7.
8.
9.
Indices of plant competition   总被引:30,自引:3,他引:30  
  相似文献   

10.
Size-asymmetric competition among plants is usually defined as resource pre-emption by larger individuals, but it is usually observed and measured as a disproportionate size advantage in the growth of larger individuals in crowded populations (“size-asymmetric growth”). We investigated the relationship between size-asymmetric competition and size-asymmetric growth in a spatially explicit, individual-based plant competition model based on overlapping zones of influence (ZOI). The ZOI of each plant is modeled as a circle, growing in two dimensions. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. We grew simulated populations with different degrees of size-asymmetric competition and at different densities and analyzed the size dependency of individual growth by fitting coupled growth functions to individuals. The relationship between size and growth within the populations was summarized with a parameter that measures the size asymmetry of growth. Complete competitive symmetry (equal division of contested resources) at the local level results in a very slight size asymmetry in growth. This slight size asymmetry of growth did not increase with increasing density. Increased density resulted in increased growth asymmetry when resource competition at the local level was size asymmetric to any degree. Size-asymmetric growth can be strong evidence that competitive mechanisms are at least partially size asymmetric, but the degree of size-asymmetric growth is influenced by the intensity as well as the mode of competition. Intuitive concepts of size-asymmetric competition among individuals in spatial and nonspatial contexts are very different.  相似文献   

11.
A Kolmogorov-type competition model featuring allocation profiles, gain functions, and cost parameters is examined. For plant species that compete for sunlight according to the canopy partitioning model [R.R. Vance and A.L. Nevai, Plant population growth and competition in a light gradient: a mathematical model of canopy partitioning, J. Theor. Biol. 245 (2007), pp. 210–219] the allocation profiles describe vertical leaf placement, the gain functions represent rates of leaf photosynthesis at different heights, and the cost parameters signify the energetic expense of maintaining tall stems necessary for gaining a competitive advantage in the light gradient. The allocation profiles studied here, being supported on three alternating intervals, determine “interior” and “exterior” species. When the allocation profile of the interior species is a delta function (a big leaf) then either competitive exclusion or coexistence at a single globally attracting equilibrium point occurs. However, if the allocation profile of the interior species is piecewise continuous or a weighted sum of delta functions (multiple big leaves) then multiple coexistence states may also occur.  相似文献   

12.
13.
A review of competition in north temperate dung beetle communities   总被引:2,自引:0,他引:2  
Abstract. 1. Studies of north temperate dung beetle communities frequently invoke competition as an influential ecological process. In this review, the evidence for competition in north temperate dung beetle communities is evaluated and the role of competition as a factor affecting community structure is assessed.
2. Resource limitation and the evidence for interspecific competition are assessed by collating the available experimental and observational evidence for both the adult and larval stages of the dung beetle life cycle. The role of competition as a structuring force in dung beetle communities is discussed under the following headings: niche dynamics, migration to and from individual pats, the aggregation model of co-existence, and metapopulations.
3. Some of the main conclusions are that competition for space is much more likely to occur than competition for food; the effects of competition on community structure are poorly understood; several of the influential studies of competition in north temperate dung beetle communities need to be evaluated carefully. The differences in ecology between tropical and temperate dung beetle communities are clarified.
4. As priorities for future research, resource utilisation and competition should be researched experimentally: density-dependent relationships should be investigated, particularly for the larval stages, as should competitive interactions with other dung fauna. If such experimental approaches establish convincingly the occurrence of competition, then the extent of competition in the field and under real world conditions needs to be established. A functional group classification of dung beetles and other dung fauna is described, which may improve the generality of interpretation from individual, site-specific results.  相似文献   

14.
We report an experiment designed to identify the effect of elevated CO2 on species of phytoplankton in a simple laboratory system. Major taxa of phytoplankton differ in their ability to take up CO2, which might lead to predictable changes in the growth rate of species and thereby shifts in the composition of phytoplankton communities in response to rising CO2. Six species of phytoplankton belonging to three major taxa (cyanobacteria, diatoms and chlorophytes) were cultured in atmospheres whose CO2 concentration was gradually increased from ambient levels to 1000 parts per million over about 100 generations and then maintained for a further 200 generations at elevated CO2. The experimental design allowed us to trace a predictive sequence, from physiological features to the growth response of species to elevated CO2 in pure culture, from the growth response in pure culture to competitive ability in pairwise mixtures and from pairwise competitive ability to shifts in the relative abundance of species in the full community of all six species. CO2 altered the dynamics of growth in a fashion consistent with known differences among major taxa in their ability to take up and use CO2. This pure‐culture response was partly successful in predicting the outcome of competition in pairwise mixtures, especially the enhanced competitive ability of chlorophytes relative to cyanobacteria, although generally statistical support was weak. The competitive response in pairwise mixtures was a good predictor of changes in competitive ability in the full community. Hence, there is a potential for forging a logical chain of inferences for predicting how phytoplankton communities will respond to elevated CO2. Clearly further extensive experiments will be required to validate this approach in the greater complexity found in diverse communities and environments of natural systems.  相似文献   

15.
'Who comes first' is decisive for plant community assembly and ecosystem properties. Early arrival or faster initial development of a species leads to space occupancy both above and below ground and contributes to species success. However, regular disturbance (e.g. biomass removal) might permit later-arriving or slower-developing species to catch up. Here, artificial communities of grassland species belonging to the plant functional types (PFTs) herb, grass and legume were used to test the effect of stepwise arrival (sowing) of PFTs. Dramatic effects were found as a result of a 3 wk arrival difference on composition and above-ground biomass that persisted over four harvests and two seasons. Priority effects, such as unequal germination time (arrival), and thus differences in community age structure, had lasting effects on PFT biomass contribution and associated ecosystem functioning. These effects were robust against above-ground disturbance. Benefits of earlier root formation outweighed above-ground species interaction. Earlier space occupancy and bigger reserve pools are the likely causes. Natural populations commonly exhibit age diversity and asynchrony of development among taxa. In experiments, artificial synchrony of arrival (sowing) may thus induce assembly routes favouring faster-establishing taxa, with consequences for ecosystem functioning (e.g. productivity). Founder effects, such as those observed here, could be even greater in communities of slow-growing species or forests, given their longer generation time and minor disturbance.  相似文献   

16.
17.
Strength of interactions between species may be an important tool in our effort to understand community structure. Recent theoretical and empirical findings suggest that despite the presence of some strong interactions, weak interactions prevail in communities. Here, we examine how mean interaction strengths change as theoretical competition communities assemble and what the distribution of interaction coefficients is in the communities that are formed during the assembly process. Our results show that the mean competition strengths fall as assembly progresses and that most interactions in the communities formed are weak. Communities that are invulnerable to further invasions are those where interspecific interactions are weaker than the average interaction strength between species in the pool. If these results can be generalized to more than one trophic level, implications for management and conservation of natural communities are substantial.  相似文献   

18.
Day  Troy 《Genetica》2001,(1):71-86
A model is presented that explores how population structure affects the evolutionary outcome of ecological competition for resources. The model assumes that competition for resources occurs within groups of a finite number of individuals (interaction groups), and that limited dispersal of individuals between groups (according to Wright's island model of population structure) results in genetic structuring of the population. It is found that both finite-sized interaction groups and limited dispersal can have substantial effects on the evolution of resource exploitation strategies as compared to models with a single, infinitely large, well-mixed interaction group. Both effects, in general, tend to select for less aggressive competitive strategies. Moreover, both effects also tend to reduce the likelihood of the evolutionary diversification of resource exploitation strategies that often occurs in models of resource competition with infinite populations. The results are discussed in the context of theories of the evolutionary diversification of resource exploitation strategies and speciation.  相似文献   

19.
Many insect field populations, especially aphids, often exhibit irregular and even catastrophic fluctuations. The objective of the present study is to explore whether or not the population intrinsic rates of growth ( r m) obtained under laboratory conditions can shed some light on the irregular changes of insect field populations. We propose to use the catastrophe theory, one of the earliest nonlinear dynamics theories, to answer the question. To collect the necessary data, we conducted a laboratory experiment to investigate population growth of the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in growth chambers. The experiment was designed as the factorial combinations of five temperatures and five host plant-growth stages (25 treatments in total): 1800 newly born RWA nymphs arranged in the 25 treatments (each treatment with 72 repetitions) were observed for their development, reproduction and survival through their entire lifetimes. After obtaining the population intrinsic rates of growth ( r m) from the experimental data under various environmental conditions, we built a cusp catastrophe model for RWA population growth by utilizing r m as the system state variable, and temperature and host plant-growth stage as control variables. The cusp catastrophe model suggests that RWA population growth is intrinsically catastrophic , and dramatic jumps from one state to another might occur even if the temperature and plant-growth stage change smoothly . Other basic behaviors of the cusp catastrophe model, such as catastrophic jumps , hystersis and divergence , are also expected in RWA populations. These results suggest that the answer to the previously proposed question should be yes.  相似文献   

20.
The Drosophila adult posterior midgut has been identified as a powerful system in which to study mechanisms that control intestinal maintenance, in normal conditions as well as during injury or infection. Early work on this system has established a model of tissue turnover based on the asymmetric division of intestinal stem cells. From the quantitative analysis of clonal fate data, we show that tissue turnover involves the neutral competition of symmetrically dividing stem cells. This competition leads to stem-cell loss and replacement, resulting in neutral drift dynamics of the clonal population. As well as providing new insight into the mechanisms regulating tissue self-renewal, these findings establish intriguing parallels with the mammalian system, and confirm Drosophila as a useful model for studying adult intestinal maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号