首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of 3-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- alpha-(7 alpha) and-beta-D-glucopyranose (7 beta) and their 3-O-chloroacetyl analogues (11 alpha and 11 beta) are described. Condensation (BF3-etherate, ethyl acetate, -20 degrees) of 7 alpha with 4'-O-benzyloxycarbonyl-4'-O-demethyl-4-epipodophyllotoxin (8) afforded mainly the beta-glycoside 9 beta (alpha, beta-ratio 1:9). Condensation of 11 alpha beta with 8 or the 4'-O-chloroacetyl analogue 13 gave mainly the 4-O-(2-benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethyl idene-beta-D- glucopyranosyl)-epipodophyllotoxin 12 beta or 15 beta. Glycosidation of podophyllotoxin (14) with 11 alpha beta (during which the aglycon epimerized at C-4 under the action of BF3-etherate) afforded alpha- (16 alpha) and beta-glycoside (16 beta) in the ratio 1:5. Removal of the chloroacetyl groups from 12 beta, its alpha analogue 12 alpha, and 15 beta gave the 4-O-(2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene-alpha-(17 alpha) and -beta-D-glucopyranosyl)-4'-O-demethyl-epipodophyllotoxins (17 beta and 20 beta), respectively. Hydrogenolysis of the benzyloxycarbonyl groups then gave 4-O-(2-amino-2-deoxy-4,6-O-ethylidene-alpha- (18 alpha) and -beta-D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (18 beta). Reductive alkylation of 18 beta and 18 alpha afforded the 2"-deoxy-2"-dimethylamino-etoposide 3 and its alpha analogue 19 alpha.  相似文献   

2.
Reductive cleavage of fully methylated, partially O-carboxymethylated cellulose had previously been shown to produce 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-, -2-O-(methoxycarbonylmethyl)-3,6-di-O-methyl-, -3-O-(methoxycarbonylmethyl)-2,6-di-O-methyl-, -6-O-(methoxycarbonylmethyl)-2,3-di-O-methyl-, -2,3-di-O-(methoxycarbonylmethyl)-6-O-methyl-, -2,6-di-O-(methoxycarbonylmethyl)-3-O-methyl-, -3,6-di-O-(methoxycarbonylmethyl)-2-O-methyl-, and -2,3,6-tri-O-(methoxycarbonylmethyl)-D-glucitol. Described herein is the independent synthesis of these derivatives, except for the first, which had been reported. In addition, their 1H-n.m.r. spectra, chemical-ionization (NH3) mass spectra, and electronionization mass spectra are tabulated.  相似文献   

3.
The fate of terminal (nonreducing) alpha-D-glucopyranosyluronic groups under reductive cleavage conditions was investigated by using the Klebsiella K2 (strain NCTC-418) capsular polysaccharide. Treatment of the fully methylated polysaccharide (1) with triethylsilane and a mixture of trimethylsilyl methanesulfonate (Me3SiOSO2CH3) and boron trifluoride etherate (BF3.Et2O) as the catalyst, resulted in complete cleavage of all glycosidic linkages to yield the expected products, namely 3-O-acetyl-1,5-anhydro-2,4,6-tri-O-methyl-D-glucitol (2), 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-mannitol (3), 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-glucitol (4), and methyl 2,6-anhydro-3,4,5-tri-O-methyl-L-gulonate. Treatment of 1 with trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) as the catalyst resulted in incomplete cleavage of the glycosidic linkage of the methylated D-glucopyranosyluronic group, to yield 4-O-acetyl-1,5-anhydro-2,6-di-O-methyl- 3-O-(methyl2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate )-D-mannitol (9). Reductive cleavage of 1 in the presence of BF3.Et2O resulted in incomplete cleavage of all glycosidic linkages and gave rise to all four dimers (including 9) that could be formed from a tetrasaccharide repeating unit. The proposed structures of these dimers are based upon their composition, as established by chemical ionization mass spectrometry and by the reported structure of the polysaccharide. A small proportion of 1,5-anhydro-2,4,6-tri-O-methyl-3-O-(methyl 2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate)-D-mannitol (12) was also detected in the products of the BF3.Et2O-catalyzed reductive cleavage. The presence of 12 is chemical evidence for the phase of the tetrasaccharide repeating unit in the polysaccharide. The reductive cleavage of 1 was also accomplished after reduction of its ester groups with lithium aluminum hydride. Complete cleavage of all glycosidic linkages was observed when either Me3SiOSO2CF3 or Me3SiOSO2CH3-BF3.Et2O was used to catalyze reductive cleavage, and anhydroalditols 2, 3, 4, and 6-O-acetyl-1,5-anhydro-2,3,4-tri-O-methyl-D-glucitol were produced, as expected.  相似文献   

4.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

5.
Seven daunorubicin analogs containing α-l-, α-d-, and β-d-glycosidic linkages, in which the natural occurring sugar (l-daunosamine) was replaced by diastereo-isomeric 3-amino-2,3,6-trideoxyhexoses (3-epi-l-daunosamine, d-acosamine, d-daunosamine, d-ristosamine, and 3-epi-d-daunosamine), were prepared. In all cases, glycosidation with daunomycinone was performed in the presence of p-toluene-sulfonic acid starting from 1-O-acetyl-2,3,6-trideoxy-4-O-p-nitrobenzoyl-3-trifluoroacetamidohexopyranoses (prepared from the corresponding methyl 3-amino-2,3,6-trideoxyhexopyranosides) or from 1,5-anhydro-2,3,6-trideoxy-4-O-p-nitrobenzoyl-3-trifluoroacetamidohex-1-enitols (prepared from glycals or pseudoglycals, the 3-amino group being introduced by substitution with sodium azide and subsequent reduction). Glycosidation was followed by removal of the protecting groups.  相似文献   

6.
Attempts to prepare 1,2:5,6 and 2,3:5,6 di-unsaturated sugars starting from 3,4,6-tri-O-acetyl-1,5-anhydro-1,2-dideo xy-d-arabino-hex-1-enitol or from ethyl 4,6-di-O-acetyl-1,5-anhydro-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside led to 1,5-anhydro-1,2,6-trideoxy-l-threo-hex-5-enitol and its 3,4-diacetate. Hydrogenation and hydrogenolysis of the unsaturated chloro and fluoro derivatives afforded 1,5-anhydro-1,2,6-trideoxy-d-arabino-hexitol and ethyl 4-O-acetyl-2,3,6-trideoxy-α-d-erythro-hexopyranoside.  相似文献   

7.
Abstract

Reaction of the silylated 6,7-dihaloquinoline bases 10–12 with l-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (13) gave ethyl 7-chloro-6-flouro-l,4-dihydro-4-oxo-1 -(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)quinoline-3-carboxylate (14) and the free acids 15 and 16, respectively, which led on deblocking of the sugar moiety to the free nucleosides 17, 18 and 20, respectively. Treatment of 14 with methanolic ammonia afforded the amide derivative 19. Ribosylation of 11 with l,2-di-O-acetyl-3-azido-3-deoxy-5-p-toluoyl-β-D-ribofuranose (21) afforded the azido nucleoside 22, which was again converted into the free nucleoside 23. Analogously, reaction of 11 with the chloro deoxyribose derivative 24 led to a mixture of α /β (2:1) anomers of 25. Deblocking and recrystallization of the product gave mainly the α-anomer 26. Compounds 17–19, 23 and 26 were evaluated against Escherichia coli and found inactive. Compound 16–18 and 22 were inactive aganist HIV-1 (III B) and HIV-2 (ROD) induced cytopathicity in human MT-4 lymphocyte cells.  相似文献   

8.
1,2,5-Tri-O-acetyl-3,6-anhydro-3-thio-D-glucofuranose was synthesised starting from D-glucose and was used as a donor for the glycosidation of 4-cyano- and 4-nitrobenzenethiol. In the latter reaction, besides an anomeric mixture of the 4-nitrophenyl 2,5-di-O-acetyl-3,6-anhydro-1,3-dithio-D-glucofuranosides, the corresponding 2,6-anhydro-1,2-dithio-D-altrofuranosides were also obtained, formed via a rearrangement of the sugar moiety. A similar rearrangement could be observed during the hydrolysis of the glycosidic bond of methyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-alpha-D-glucopyranoside with aqueous trifluoroacetic acid, affording after acetylation besides 1-O-acetyl-3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-alpha-D-glucopyranose (32alpha), 1,1,5-tri-O-acetyl-3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-D-glucose, methyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-beta-D-glucopyranoside and 1,5-di-O-acetyl-2,6-anhydro-3-O-(4-nitrobenzoyl)-2-thio-alpha-D-altrofuranose (40). Glycosidation of 4-cyanobenzethiol with 32alpha in the presence of trimethylsilyl triflate as promoter afforded 4-cyanophenyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-1,3-dithio-beta-D-glucopyranoside as a minor component only, besides 4-cyanophenyl 3,6-anhydro-2-S-(4-cyanophenyl)-4-O-(4-nitrobenzoyl)-1,2,3-trithio-beta-D-glucopyranoside. When boron trifluoride etherate was used as promoter in the reaction of 32alpha with 4-cyano- and 4-nitrobenzenethiol, the corresponding beta-thioglycosides were obtained, while 40 gave under identical conditions the alpha anomers exclusively. All thioglycosides obtained after deacylation were submitted to biological evaluation. Among these glycosides, the 4-cyanophenyl 3,6-thioanhydro-1,3-dithio-D-glucofuranoside possessed the strongest oral antithrombotic effect.  相似文献   

9.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

10.
The naturally occurring antioxidant Ascopyrone P (1,5-anhydro-4-deoxy-D-glycero-hex-1-en-3-ulose, 1) was prepared from the rare sugar 1,5-anhydro-D-fructose (AF, 3) in three steps in an overall yield of 36%. Thus, acetylation of 3 afforded the enolone 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulopyranose (4), which could be isomerised to 2,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-1-ene-3-ulose (6). Deacetylation of 6 under mild conditions gave crystalline Ascopyrone P (1).  相似文献   

11.
《Carbohydrate research》1986,150(1):121-131
6-Amino-1,5-anhydro-6-deoxy-d-glucitol (11) was prepared from 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (1) in six steps. Reduction of 1 with tributyltin hydride, followed by deacetylation, monomolar tosylation, and reacetylation, afforded 2,3,4-tri-O-acetyl-1,5-anhydro-6-O-toluene-p-sulfonyl-d-glucitol (9). Alternatively, tritylation of 1,5-anhydro-d-glucitol, followed by acetylation, detritylation, and tosylation, gave 9. Mesylation gave 8. Treatment of 8 or 9 with azide anion afforded the azide 10, reduction of which with tributyltin hydride gave 11, which was mesylated or tosylated, and then deacetylated to give the 6-methane-sulfonamido or 6-toluene-p-sulfonamido derivative. Similarly, mesylation or tosylation of 3,4,6-tri-O-acetyl-2-amino-1,5-anhydro-2-deoxy-d-glucitol (20) gave the 2-methanesulfonamido or 2-toluene-p-sulfonamido derivatives. Treatment of 11 and 20 with sulfur trioxide-pyridine afforded the sulfoamino derivatives, deacetylation of which gave sugar analogs of cyclamate-like compounds.  相似文献   

12.
Permethylated alginic acids comprised of 4-linked D-mannopyranosyluronic acid and 4-linked L-gulopyranosyluronic acid residues undergo reductive cleavage to yield, after acetylation, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-D-mannonate (2b) and methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-D-gluconate (3b) as major products. Small amounts (ca. 13%) of ring-contracted products, namely methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-D-mannonate (9) and methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-D-gluconate (10), were also observed in these experiments. These results are in marked contrast to previous results on the reductive cleavage of 4-linked D-glucopyranosyluronic acid residues, wherein the ring-contracted product was formed exclusively. Formation of the ring-contracted products could be completely eliminated by reduction (LiAlH4) of ester groups in the permethylated alginic acid prior to reductive cleavage. In the latter experiments, 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-mannitol (5b) and 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-L-gulitol (6b) were the sole products of reductive cleavage of the 4-linked ManA and 4-linked GulA residues, respectively. However, in the previous experiments it was noted that low yields of permethylated alginic acids were obtained and that extensive depolymerization occurred under methylation conditions. Depolymerization could be avoided and higher yields of permethylated polysaccharides could be obtained, by reduction of the carboxyl groups of the alginic acids prior to methylation. Reductive cleavage of the latter polysaccharides yielded the products expected from 4-linked D-mannopyranosyl and 4-linked L-gulopyranosyl residues, namely 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-mannitol (13b) and 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-L-gulitol (14b), respectively. Using the latter analytical strategy, it was established that the Macrocystis pyrifera alginate was comprised of 60% 4-linked ManA and 40% 4-linked GulA residues, whereas the Pseudomonas aeruginosa alginate was comprised of 80% 4-linked ManA and 20% 4-linked GulA residues.  相似文献   

13.
O-α-d-Galactopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→4)-d-glucopyranose (12) was prepared by inversion of configuration at C-4″ of 2,3,2′,3′,6′,2″,3″-hepta-O-acetyl-1,6-anhydro-4″,6″-di-O-methylsulfonyl-β-maltotriose (7), followed by O-deacylation, acetylation, acetolysis, and de-O-acetylation. The intermediate 7 was obtained by treatment of 1,6-anhydro-β-maltotriose (2) with benzal chloride in pyridine, followed by acetylation, removal of the benzylidene group, and methane-sulfonylation. Selective tritylation of 2 and subsequent acetylation afforded 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-trityl-β-maltotriose (6), which was O-detritylated and p-toluenesulfonylated to give 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-p-tolylsulfonyl-β-maltotriose (13). Nucleophilic displacement of 13 with thioacetate, iodide, bromide, chloride, and azide ions gave 6″-S-acetyl- (14), 6″-iodo- (15), 6″-bromo- (16), 6″-chloro- (19), and 6″-azido- (20) 1,6-anhydro-β-maltotriose octaacetates, respectively. 6″Deoxy- (18) and 6″-acetamido-6″-deoxy (21) derivatives of 1,6-anhydro-β-maltotriose decaacetates were also prepared from 15 and 16, and 20, respectively. Acetolysis of 14, 15, 16, 18, 19, and 21 afforded 1,2,3,6,2′,3′,6′,2″,3″,4″-deca-O-acetyl-6″-S-acetyl (22), -6″-iodo (23), -6″-bromo (24), -6″-deoxy (25), -6″-chloro (26), and -6″-acetamido-6′-deoxy (27) derivatives of α-maltotriose, respectively. O-Deacetylation of 24, 25, and 26 furnished 6″-bromo-(28), 6″-deoxy- (29), and 6″-chloro- (30) maltotrioses, respectively, which on acetylation gave the corresponding β-decaacetates.  相似文献   

14.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

15.
The "heptasaccharides" O-alpha-D-galactopyranosyl-(1----3)- O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----3)-D-ribit-5-yl sodium phosphate] (25) and O-alpha-D-galactopyranosyl- (1----3)-O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----4)-D-ribit-5-yl sodium phosphate] (27), which are structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B ([----2)- -alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap- (1----X)-D-RibOH-(5-P----]n; 6A X = 3, 6B X = 4), respectively, have been synthesized. 2,4-Di-O-acetyl- 3-O-[2,4,6-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranosyl trichloroacetimidate (13) was coupled with 5-O-allyloxycarbonyl-1,2,4-tri-O- benzyl-D-ribitol (10), using trimethylsilyl triflate as a promotor (----14), and deallyloxycarbonylation (----15) and conversion into the corresponding triethylammonium phosphonate then gave 16. Condensation of 16 with 4-methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]- alpha-L-rhamnopyranoside (22) followed by oxidation and deprotection afforded 25. 5-O-Allyl-1-O-allyloxycarbonyl-2,3-di-O-benzyl-D-ribitol (12) was coupled with 13, using trimethylsilyl triflate as a promoter, the resulting tetrasaccharide-alditol derivative 17 was deallyloxycarbonylated (----18), acetylated (----19), and deallylated (----20), and the product was converted into the triethylammonium phosphonate derivative 21. Condensation of 21 with 22 followed by oxidation and deprotection afforded 27.  相似文献   

16.
Treatment of methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4-tri-O-acetyl-alpha-D-mannopyranosyl)-alpha -D- mannopyranoside with N,N-diethylaminosulfur trifluoride (Et2NSF3), followed by O-deacetylation and catalytic hydrogenolysis, afforded methyl 2-O-(6-deoxy-6-fluoro-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8). Methyl 6-deoxy-6-fluoro-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (11) was similarly obtained from methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-alpha-D- mannopyranoside. 1,2,3,4-Tetra-O-acetyl-6-deoxy-6-fluoro-beta-D-mannopyranose (13), used for the synthesis of the 4-nitrophenyl analogs of 8 and 11, as well as their 3-O-linked isomers, was obtained by treatment of 1,2,3,4-tetra-O-acetyl-beta-D-mannopyranose with Et2NSF3. Treatment of 13 with 4-nitrophenol in the presence of tin(IV) chloride, followed by sequential O-deacetylation, isopropylidenation, acetylation, and cleavage of the acetal group, afforded 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-alpha-D-mannopyranoside (18). Treatment of 13 with HBr in glacial acetic acid furnished the 6-deoxy-6-fluoro bromide 19. Glycosylation of diol 18 with 20 gave 4-nitrophenyl 4-O-acetyl-6-deoxy-6-fluoro-3-O- (21) and -2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (23) in the ratio of approximately 2:1, together with a small proportion of a branched trisaccharide. 4-Nitrophenyl 4,6-di-O-acetyl-alpha-D-mannopyranoside was similarly glycosylated with bromide 19 to give 4-nitrophenyl 4,6-di-O-acetyl-3-O- and -2-O-(2,3,4-tri- O-acetyl-6-deoxy-6-fluoro-alpha-D-mannopyranosyl)-alpha-D-mannopyranosid e. The various di- and tri-saccharides were O-deacetylated by Zemplén transesterification.  相似文献   

17.
从梧桐科火绳属桂火绳中提取分离到22个化合物,经结构鉴定为:羽扇豆醇(1),白桦脂酸(2),齐墩果酸(3),丁香脂素(4),(+)-异落叶松树脂醇(5),东莨菪内酯(6),对羟基肉桂酸(7),二十七碳酸单甘油酯(8),2-十八烯酸单甘油酯(9),sitoindosideⅡ(10),儿茶素(11),表儿茶素(12),表儿茶素3-O-β-D-吡喃木糖甙(13),山奈酚3-O-β-D-吡喃葡萄糖甙(14),5,7,4'-三羟基异黄酮(15),4'-O-methylgallocatechin(16),反式-二氢槲皮素-3-O-α-阿拉伯糖甙(17),顺式-二氢槲皮素-3-O-α-阿拉伯糖甙(18),反式-二氢槲皮素-3-O-β-吡喃葡萄糖甙(19),3,5,7,3',5'-五羟基-4'-甲氧基异黄酮(20),山奈酚-3-O-β-D-吡喃葡萄糖(6→1)-α-L-吡喃鼠李糖甙(21),以及槲皮素3-O-β-D-吡喃葡萄糖(6→1)-β-D-吡喃葡萄糖甙(22),这些化学成分首次从该属植物中分离出来。  相似文献   

18.
W Wang  F Kong 《Carbohydrate research》1999,315(1-2):128-136
A highly efficient and convergent synthesis of a hexasaccharide, which is a dimer of the repeating unit of the antigen O2 polysaccharide of Stenotrophomonas maltophilia, was achieved via coupling of 2,3,4-tri-O-acetyl-alpha-L-xylopyranosyl bromide with the tetrasaccharide, allyl 4-O-{3-O-[4-O-(3,4-di-O-benzoyl-alpha-L-rhamnopyranosyl)-2,3,6-tri-O-ben zoyl -alpha-D-mannopyranosyl]-4-benzoyl-alpha-L-rhamnopyranosyl}-2,3,6-tri-O- benzoyl-alpha-D-mannopyranoside (18) by the Koenigs-Knorr method followed by deacylation. Compound 18 was readily prepared from the coupling of the disaccharide trichloroacetimidate, 4-O-(2-O-acetyl-3,4-di-O-benzoyl-alpha-L-rhamnopyranosyl)-2,3,6-tri-O- benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (8) with the disaccharide acceptor, allyl 4-O-(2-O-acetyl-4-O-benzoyl-alpha-L-rhamnopyranosyl)-2,3,6-tri-O-benzoyl - alpha-D-mannopyranoside (16), and both 8 and 16 were prepared via the trichloroacetimidate method from simple starting materials. The sole use of acyl protecting groups substantially simplified protection and deprotection, and the allyl group at the reducing end of allyl 4-O-{2-O-[2,3,4-tri-O-acetyl-beta-L-xylopyranosyl]-3-O-[4-O-(2-O-(2,3,4- tri-O-acetyl-beta-L-xylopyranosyl)-3,4-di-O-benzoyl-alpha-L-rhamnopyrano syl) -2,3,6-tri-O-benzoyl-alpha-D-mannopyranosyl]-4-O-benzoyl-alpha- L-rhamnopyranosyl}-2,3,6-tri-O-benzoyl-alpha-D-mannopyranoside 19 allowed further chemical transformation.  相似文献   

19.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

20.
Steroidal glycosides from the bulbs of Lilium dauricum.   总被引:2,自引:0,他引:2  
The bulbs of Lilium dauricum yielded 11 compounds, including six new steroidal glycosides. The structures have been determined by spectral analysis and hydrolysis to be (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl-( 1----3)]- beta-D-glucopyranoside, (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[beta-D-glucopyranosyl-(1----4)]- beta-D-glucopyranoside, (25R)-spirost-5-en-3 beta-ol (diosgenin) 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl- (1----3)]-beta-D-glucopyranoside, (25R)-3 beta,17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside, (25R)-3 beta, 17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L- arabinopyranosyl-(1----3)]-beta-D-glucopyranoside and (20R,22R)-3 beta,20,22-trihydroxy-5 alpha-cholestan-6-one (tenuifoliol) 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside. The absolute configurations of C-20 and C-22 of tenuifoliol were further confirmed by detailed analysis of the NOE difference spectrum of the corresponding isopropylidene derivative. Several known compounds were also isolated and identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号