首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nucleolus is the largest compartment of the cell nucleus and is where ribosomal RNAs (rRNAs) are synthesized, processed and assembled with ribosomal proteins. In addition to rRNA gene clusters that build the core of this subnuclear structure, nucleoli are associated with condensed chromatin. Although the higher order structures of rRNA genes and nucleolus-associated chromatin have been studied for decades, detailed molecular insights into the constituents and organization of the nucleolar genome are only beginning to emerge. Here, we summarize current views on the structural organization of nucleolar DNA and on the targeting and anchoring of chromatin domains to this subnuclear compartment.  相似文献   

3.
4.
modulo belongs to the modifier of Position Effect Variegation class of Drosophila genes, suggesting a role for its product in regulating chromatin structure. Genetics assigned a second function to the gene, in protein synthesis capacity. Bifunctionality is consistent with protein localization in two distinct subnuclear compartments, chromatin and nucleolus, and with its organization in modules potentially involved in DNA and RNA binding. In this study, we examine nucleic acid interactions established by Modulo at nucleolus and chromatin and the mechanism that controls the distribution and balances the function of the protein in the two compartments. Structure/function analysis and oligomer selection/amplification experiments indicate that, in vitro, two basic terminal domains independently contact DNA without sequence specificity, whereas a central RNA Recognition Motif (RRM)-containing domain allows recognition of a novel sequence-/motif-specific RNA class. Phosphorylation moreover is shown to down-regulate DNA binding. Evidence is provided that in vivo nucleolar Modulo is highly phosphorylated and belongs to a ribonucleoprotein particle, whereas chromatin-associated protein is not modified. A functional scheme is finally proposed in which modification by phosphorylation modulates Mod subnuclear distribution and balances its function at the nucleolus and chromatin.  相似文献   

5.
6.
A central feature of oogenesis in the copepod crustacean, Acanthocyclops vernalis, is the development of a very large nucleolus in the oocytes. This nucleolus appears to be the only source of rRNA for the oocyte, as no helper cells are present. Previous work has suggested that ribosomal DNA sequences other than those found at the morphological nucleolar organizers are participating in the elaboration of this nucleolus. It has been hypothesized that chromatin diminution, which occurs during early embryonic development, may involve the loss of these rDNA sequences, which are needed only for the production of ribosomes during oogenesis. The present study examines the development of the large oocyte nucleolus at the electron microscopic level. Nucleologenesis in A. vernalis was found to proceed through 5 stages. During the first 3 stages nucleolar morphology resembled that described in other organisms. In the last 2, however, nucleolar morphology changed radically and the nucleolus was seen to increase greatly in size while breaking up into multiple subunits. The subunits initially resemble active nucleoli, although in the last stage, synthesis appears to stop, as the nucleolus was found to consist only of dense areas containing ribosome-like particles. These observations are consistent with the hypothesis that diminuted DNA contains ribosomal RNA genes.  相似文献   

7.
8.
9.
10.
11.
12.
The nucleolus of Drosophila melanogaster salivary gland cells, examined by whole mount electron microscopy, consists of a fibrillar core region and a peripheral region containing both fibres and granules. These regions appear to correspond to the fibrillar and granular components, respectively, seen in thin sections. Most of the nucleoli were attached to the chromocenter region of the polytene chromosomes, containing the nucleolar organizer. Bundles of relatively straight chromatin fibres, 13 nm in diameter, extended from the chromocenter into the core region of the nucleolus, however it was not possible to trace the path of these chromatin fibres through the nucleolus since they were obscured within the mass of nucleolar fibres. The nucleolar fibres in both the core and peripheral regions were irregular and knobby, with a diameter of about 15 nm. In the core region, the fibres appeared to be of considerable length and were characteristically clustered together to form small interconnected masses. The fibres in the peripheral region were relatively short and some appeared to blend with amorphous, poorly-defined pools of material. Electron dense granules 15-20 nm in diameter were also associated with this amorphous substance. It is hypothesized that the formation and subsequent packaging of the 28s rRNA may be represented by a morphological transition of the peripheral fibres, via an amorphous pool-like intermediate stage, into the nucleolar granules. The results of this study indicate that whole mount electron microscopy may be a useful alternative to thin sectioning in high resolution studies of the nucleolus.  相似文献   

13.
14.
The nucleolus is the site of ribosome synthesis in the nucleus, whose integrity is essential. Epigenetic mechanisms are thought to regulate the activity of the ribosomal RNA (rRNA) gene copies, which are part of the nucleolus. Here we show that human cells lacking DNA methyltransferase 1 (Dnmt1), but not Dnmt33b, have a loss of DNA methylation and an increase in the acetylation level of lysine 16 histone H4at the rRNA genes. Interestingly, we observed that SirT1, a NAD+-dependent histone deacetylase with a preference for lysine 16 H4, interacts with Dnmt1; and SirT1 recruitment to the rRNA genes is abrogated in Dnmt1 knockout cells. The DNA methylation and chromatin changes at ribosomal DNA observed are associated with a structurally disorganized nucleolus, which is fragmented into small nuclear masses. Prominent nucleolar proteins, such as Fibrillarin and Ki-67, and the rRNA genes are scattered throughout the nucleus in Dnmt1 deficient cells. These findings suggest a role for Dnmt1 as an epigenetic caretaker for the maintenance of nucleolar structure.  相似文献   

15.
16.
We have studied the distribution of histones in the nucleolus of human circulating lymphocytes in situ, using thin sections, either treated with antibodies against the core histones revealed by colloidal gold, or stained with the acrolein-silver methenamine technique for basic proteins. Gold particles were not found in the fibrillar centre, nor were silver-stained structures visible in this nucleolar component. Since the fibrillar centre contains the bulk of the ribosomal chromatin which is in a completely extended, non-nucleosomal configuration, our results indicate that this chromatin is devoid of histones.  相似文献   

17.
18.
Chromatin: linking structure and function in the nucleolus   总被引:1,自引:0,他引:1  
McKeown PC  Shaw PJ 《Chromosoma》2009,118(1):11-23
  相似文献   

19.
Fundamental processes such as ribosomal RNA synthesis and chromatin remodeling take place in the nucleolus, which is hyperactive in fast-proliferating cells. The sophisticated regulatory mechanism underlying the dynamic nucleolar structure and functions is yet to be fully explored. The present study uncovers the mutual functional dependency between a previously uncharacterized human long non-coding RNA, which we renamed LETN, and a key nucleolar protein, NPM1. Specifically, being upregulated in multiple types of cancer, LETN resides in the nucleolus via direct binding with NPM1. LETN plays a critical role in facilitating the formation of NPM1 pentamers, which are essential building blocks of the nucleolar granular component and control the nucleolar functions. Repression of LETN or NPM1 led to similar and profound changes of the nucleolar morphology and arrest of the nucleolar functions, which led to proliferation inhibition of human cancer cells and neural progenitor cells. Interestingly, this inter-dependency between LETN and NPM1 is associated with the evolutionarily new variations of NPM1 and the coincidental emergence of LETN in higher primates. We propose that this human-specific protein–lncRNA axis renders an additional yet critical layer of regulation with high physiological relevance in both cancerous and normal developmental processes that require hyperactive nucleoli.Subject terms: Long non-coding RNAs, Cell division  相似文献   

20.
A procedure was developed for isolation of variously sized nucleoli in order to study the mechanism of nucleolar formation from multiple nucleolar organizers and to compare the compositions of different-sized nucleoli from Ehrlich ascites tumor cells. Relatively small nucleoli and large nucleoli from Ehrlich ascites tumor cells were separated by centrifugation at 400 g for 5 min in a layer of 0.34 M sucrose over 0.88 M sucrose. Small nucleoli remained in the 0.34 M sucrose layer while the large nucleoli accumulated in the 0.88 M sucrose.Three fractions, provisionally named small, intermediate and large nucleoli, containing 0.33, 0.41 and 0.84 pg DNA/nucleolus, respectively, were separated. Unfractionated nucleoli contained 0.59 pg DNA/nucleolus. The RNA content also increased with the size of the nucleolus and no significant difference was observed in the RNA/DNA ratios in the three fractions. Large nucleoli incorporated more [3H]uridine and [32P]orthophosphate into RNA than did small nucleoli, but the base compositions of the RNAs extracted from the different-sized nucleoli were similar. No significant fragmentation occurred on sonication of large nucleoli for 3 min, so the observed difference in the DNA contents was not due to mechanical damage of the nucleoli.The DNAs of these different-sized nucleoli were analysed on CsCl gradients. The nucleoli contained similar percentages of satellite DNA (20–22%) which were also similar to those of total, unfractionated nucleoli. Approx. 10% of the extranucleolar DNA is satellite DNA—thus the nucleolar fractions were probably not appreciably contaminated with extranucleolar DNA. The DNA of small nucleoli contained a slightly lower percentage (0.058%) of ribosomal cistrons than large nucleoli (0.081%). This means that the higher content of DNA in the large nucleoli is not merely due to longer sized chromatin with extra regions of the vicinity of nucleolar organizers. Thus these results suggest that the total content of ribosomal cistrons/nucleolus is roughly proportional to the DNA content of the nucleoli, at least in Ehrlich ascites tumor cells. Namely, the number of ribosomal cistrons per nucleolus for small, intermediate and large nucleoli is 40, 60 and 130, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号