首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme-linked immunosorbent assays for acetylcholinesterase (AChE) and for butyrylcholinesterase (BuChE) were markedly more specific than conventional assays using selective enzyme inhibitors. The new assays were used with blood and brain samples containing traces of one enzyme dominated by large amounts of the other. The results showed that human plasma does contain AChE (8 ng/ml), even though its major cholinesterase is BuChE (3,300 ng/ml). BuChE immunoreactivity was not detected in human red blood cells but occurred in all brain regions. The cerebellum was the richest region tested (540 ng of BuChE/g of tissue), whereas the cerebral cortex was the poorest (240 ng of BuChE/g). However, because of the small local AChE content (99 ng/g), BuChE was the major cortical cholinesterase. The picture was reversed in the putamen, where BuChE immunoreactivity (340 ng/g) was far outweighed by that of AChE (6,100 ng/g).  相似文献   

2.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   

3.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

4.
A novel series of phthalimide‐dithiocarbamate hybrids was synthesized and evaluated for in vitro inhibitory potentials against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The anti‐cholinesterase results indicated that among the synthesized compounds, the compounds 7g and 7h showed the most potent anti‐AChE and anti‐BuChE activities, respectively. Molecular docking and dynamic studies of the compounds 7g and 7h , respectively, in the active site of AChE and BuChE revealed that these compounds as well interacted with studied cholinesterases. These compounds also possessed drug‐like properties and were able to cross the BBB.  相似文献   

5.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the pi-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the pi-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

6.
Organophosphate (OP) nerve agents are known as the most toxic chemical warfare agents that act by inhibiting the enzyme acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because BuChE is present at a level of about 3,900 times higher than AChE in plasma, most OP agents first react with BuChE in plasma, suggesting that OP-inactivated BuChE (OP-iBuChE) may act as a biomarker of OP exposure. In this study, we generated an anti-BuChE monoclonal antibody (mAb) that has reduced binding activity to VX-inactivated BuChE compared to native BuChE by phage display. We performed subtractive biopanning of a synthetic human Fab library against native BuChE and soman-iBuChE or VX-iBuChE. As the results, we isolated four Fab clones that showed differential binding activities to VX-iBuChE and native BuChE in ELISAs. To confirm the antigen-binding specificity of the selected clones, the Fabs were converted to IgG1s, and the IgG antibodies were expressed in HEK293F cells and purified. One of them (A2) showed approximately 30% reduced binding activity to VX-iBuChE compared to BuChE in a dose-dependent manner, whereas the other three antibodies showed almost the same binding activities to VX-iBuChE and BuChE. In addition, the A2 antibody did not show reduced binding activity to sarin-iBuChE or soman-iBuChE compared to native BuChE. The results indicate that A2 antibody shows reduced binding activity only to VX-iBuChE. A2 antibody may be applied to specific diagnosis of VX exposure.  相似文献   

7.
The differences in the inhibition activity of organophosphorus agents are a manifestation of different molecular properties of the inhibitors involved in the interaction with the active site of enzyme. We were interested in comparing the inhibition potency of four known synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2, constituting organophosphorus compounds, where R = CCl3 (1), CHCl2 (2), CH2Cl (3) and CF3 (4), and four new ones with the general formula RC(O)NHP(O)(R')2, where R' = morpholine and R = CCl3 (5), CHCl2 (6), CH2Cl (7), CF3 (8), on AChE and BuChE activities. In addition, in vitro activities of all eight compounds on BuChE were determined. Besides, in vivo inhibition potency of compounds 2 and 6, which had the highest inhibition potency among the tested compounds, was studied. The data demonstrated that compound 2 from the compound series 1 to 4 and compound 6 from the compound series 5 to 8 are the most sensitive as AChE and BuChE inhibitors, respectively. Comparing the IC50 values of these compounds, it was clear that the inhibition potency of these compounds for AChE are 2- to 100-fold greater than for BuChE inhibition. Comparison of the kinetics (IC50, Ki, kp, KA and KD) of AChE and BuChE inactivation by these compounds resulted in no significant difference for the measured variables except for compounds 2 and 6, which appeared to be more sensitive to AChE and BuChE by significantly higher kp and Ki values and a lower IC50 value in comparison with the other compounds. The LD50 value of compounds 2 and 6, after oral administration, and the changes of erythrocyte AChE and plasma BuChE activities in albino mice were studied. The in vivo experiments, similar to the in vitro results, showed that compound 2 is a stronger AChE and BuChE inhibitor than the other synthesized carbacylamidophosphates. Furthermore, in this study, the importance of electropositivity of the phosphorus atom, steric hindrance and leaving group specificity were reinforced as important determinants of inhibition activity.  相似文献   

8.
An antienzyme potency of 18 organophosphorus inhibitors (OPI), S-alkyl derivatives of thiophosphoric and thiophosphonic acids, to acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) of the spring grain aphid and corresponding mammalian enzymes is studied. It is shown that dependence of the inhibitory potency on length of alkyl radicals differs in human and aphid AChE. Smaller differences were observed in the case of aphid and horse BuChE. The obtained data are compared to the data obtained at studying other series of OPI and cholinesterases of other animals. It is suggested that the revealed peculiarity of the inhibitory specificity of aphid AChE is due to the presence of serine instead of phenylalanine in the position 331 (the numeration according to AChE of the electric ray Torpedo californica).  相似文献   

9.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the π-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the π-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

10.
Differences were observed in the extent of thermal inactivation of human butyrylcholinesterase (BuChE) and eel acetylcholinesterase (AChE). BuChE was more resistant to 57°C inactivation than was AChE. Thermal inactivation of BuChE was reversible and followed first-order kinetics. AChE thermal inactivation was irreversible and did not follow first-order kinetics. AChE was marginally protected from thermal inactivation by the nonspecific salts ammonium sulfate and sodium chloride and to a greater extent by the active site-specific salts choline chloride, sodium acetate, and acetylcholine iodide. This protection was accompanied by a loss of absorbance at 280 nm. This data supports the hypothesis that thermal inactivation of AChE occurs by conformational scrambling and that aromatic amino acid residue(s) are involved in this process.Recipient of a research fellowship from the UNCW graduate school.  相似文献   

11.
Immunochemistry of mammalian cholinesterases   总被引:1,自引:0,他引:1  
Advances in the study of cholinesterase biology have been facilitated by the development of polyclonal and monoclonal antibodies to acetylcholinesterase (AChE) (EC 3.1.1.7) and butyrylcholinesterase (BuChE) (EC 3.1.1.8) in several laboratories. Our work has focused on murine monoclonal antibodies to the mammalian enzymes. Two dozen antibodies are now in hand, with primary specificity for the AChE of human red blood cells, rabbit brain, and rat brain, and for the BuChE of human plasma. These antibodies exhibit a restricted but useful range of affinities for other mammalian cholinesterases of corresponding types. Several applications are described, including an analysis of BuChE phylogeny within the higher primates, an immunodisplacement assay of AChE in normal human red blood cells and cells from patients with paroxysmal nocturnal hemoglobinuria, a study of immunochemical differences between membrane-associated and soluble AChE of rabbit brain, and initial work on the immunofluorescence cytochemistry of the rat brain.  相似文献   

12.
Reversible inhibition of acetylcholinesterase (AChE) from bovine erythrocytes and butyrylcholinesterase (BuChE) from horse blood serum by quaternary diaminoalkyl esters of suberic (D-6), p-phenylenediacetic (PK-139), p-phenylenedipropionic (PK-154 and PK-155), p-phenylenediacrylic (PK-150 and PK-151) and phthalic (PK-105) acids, was studied under the following incubation conditions: pH 7.5, 25 degrees C, 0.1 M KCl. The inhibition kinetics were of a mixed competitive-incompetitive type, the incompetitive component alpha'-having higher values for AChE (0.26-0.60) than for BuChE (0.10-0.20). Diester PK-150 selectively inhibited BuChE (Ki=3.0-10(-6) M); its Ki value for AChE was 4.0-10(-4) M. The other diesters had a stronger inhibitory effect on AChE than on BuChE. High values of alpha' observed during AChE inhibition cannot be interpreted in terms of interaction of those bisquaternary compounds with the anionic site of the acetylated active centre and are probably due to their sorbtion at the peripheral anionic sites. Incompetitive inhibition constants (K'i=Ki/alpha') of BuChE by the diesters PK-139, PK-154 and PK-150 were found to be values of the same order as substrate inhibition constants determined in the course of BuChE hydrolysis of these diesters. Incompetitive inhibition found for the esters studied and substrate inhibition during hydrolysis of these compounds are presumably due to the same mechanism.  相似文献   

13.
人脑和人血清胆碱酯酶三维结构的计算机模拟研究   总被引:4,自引:0,他引:4  
本文以同源的电鳐胆碱酯酶(T.AChE)的三维结构为模板,模拟预测了人脑和血清胆碱酯酶(H。AChE和H.BuChE)的三维结构和活力中心的组成。指T.AChE,H.AChE和H.BuChE宁间结构差异,并讨论了ACh和H。AChE的对接(docking)。H。AChE和H.BuChE三维结构的确定将为进一步深入研究它的中毒机理和合理药物设计提供靶子。  相似文献   

14.
1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are serine hydrolase enzymes that catalyze the hydrolysis of acetylcholine.2. (–) Huperzine A is an inhibitor of AChE and is being considered for the treatment of Alzheimer's disease.3. In addition to esterase activity, AChE and BuChE have intrinsic aryl acylamidase activity.4. The function of aryl acylamidase is unknown but has been speculated to be important in Alzheimer pathology.5. Kinetic effects of (–) huperzine A and ( ±)$ huperzine A on the aryl acylamidase activity of human cholinesterases were examined.6. (–) Huperzine A inhibited the aryl acylamidase activities of both AChE and BuChE.7. (±) Huperzine A inhibited this function in AChE but stimulated BuChE aryl acylamidase suggesting that the (+) enantiomer is a powerful activator of this enzyme activity.8. The two huperzine enantiomers may prove to be useful tools to examine the function of aryl acylamidase activity, including its role in Alzheimer pathology.  相似文献   

15.
Cholinesterases: New Roles in Brain Function and in Alzheimer's Disease   总被引:15,自引:0,他引:15  
The most important therapeutic effect of cholinesterase inhibitors (ChEI) on approximately 50% of Alzheimer's disease (AD) patients is to stabilize cognitive function at a steady level during a 1-year period of treatment as compared to placebo. Recent studies show that in a certain percentage (approximately 20%) of patients this cognitive stabilizing effect can be prolonged up to 24 months. This long-lasting effect suggests a mechanism of action other than symptomatic and cholinergic. In vitro and in vivo studies have consistently demonstrated a link between cholinergic activation and APP metabolism. Lesions of cholinergic nuclei cause a rapid increase in cortical APP and CSF. The effect of such lesions can be reversed by ChEI treatment. Reduction in cholinergic neurotransmission–experimental or pathological, such as in AD–leads to amyloidogenic metabolism and contributes to the neuropathology and cognitive dysfunction. To explain the long-term effect of ChEI, mechanisms based on -amyloid metabolism are postulated. Recent data show that this mechanism may not necessarily be related to cholinesterase inhibition. A second important aspect of brain cholinesterase function is related to enzymatic differences. The brain of mammals contains two major forms of cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The two forms differ genetically, structurally, and for their kinetics. Butyrylcholine is not a physiological substrate in mammalian brain, which makes the function of BuChE of difficult interpretation. In human brain, BuChE is found in neurons and glial cells, as well as in neuritic plaques and tangles in AD patients. Whereas, AChE activity decreases progressively in the brain of AD patients, BuChE activity shows some increase. To study the function of BuChE, we perfused intracortically the rat brain with a selective BuChE inhibitor and found that extracellular acetylcholine increased 15-fold from 5 nM to 75 nM concentrations with little cholinergic side effect in the animal. Based on these data and on clinical data showing a relation between cerebrospinal fluid (CSF) BuChE inhibition and cognitive function in AD patients, we postulated that two pools of cholinesterases may be present in brain, the first mainly neuronal and AChE dependent and the second mainly glial and BuChE dependent. The two pools show different kinetic properties with regard to regulation of ACh concentration in brain and can be separated with selective inhibitors. Within particular conditions, such as in mice nullizygote for AChE or in AD patients at advanced stages of the disease, BuChE may replace AChE in hydrolizing brain acetylcholine.  相似文献   

16.
1. The cholinergic system is important in cognition and behavior as well as in the function of the cerebral vasculature. 2. Hyperhomocysteinemia is a risk factor for development of both dementia and cerebrovascular disease. 3. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are serine hydrolase enzymes that catalyze the hydrolysis of the neurotransmitter acetylcholine, a key process in the regulation of the cholinergic system. 4. It has been hypothesized that the deleterious effects of elevated homocysteine may, in part, be due to its actions on cholinesterases. 5. To further test this hypothesis, homocysteine and a number of its metabolites and analogues were examined for effects on the activity of human cholinesterases. 6. Homocysteine itself did not have any measurable effect on the activity of these enzymes. 7. Homocysteine thiolactone, the cyclic metabolite of homocysteine, slowly and irreversibly inhibited the activity of human AChE. 8. Conversely, this metabolite and some of its analogues significantly enhanced the activity of human BuChE. 9. Structure–activity studies indicated that the unprotonated amino group of homocysteine thiolactone and related compounds represents the essential feature for activation of BuChE, whereas the thioester linkage appears to be responsible for the slow AChE inactivation. 10. It is concluded that hyperhomocysteinemia may exert its adverse effects, in part, through the metabolite of homocysteine, homocysteine thiolactone, which is capable of altering the activity of human cholinesterases, the most pronounced effect being BuChE activation.  相似文献   

17.
The effects of single and repeated injections of tetramonoisopropyl pyrophosphortetramide (iso-OMPA), a selective inactivator of butyrylcholinesterase (BuChE), were studied on the ganglionic and muscular levels of BuChE and acetylcholinesterase (AChE) in cats during the steady state and following the irreversible inactivation of both enzymes by isopropylmethylphosphonofluoridate (sarin). Single intravenous injections of iso-OMPA, 3.0 or 6.0 μmol/kg, produced nearly total inactivation of BuChE with no immediate effect on the AChE of the superior cervical (SCG), stellate (StG), and ciliary (CG) ganglia and inferior oblique (10) muscle; regeneration of BuChE occurred at approximately the same rate in the three ganglia, and at 4–6 days the AChE levels were significantly elevated. When single doses of iso-OMPA were given 1 h following sarin, 2.0 μmol/kg, intravenously, there was a slight increase in the rate of AChE regeneration during the ensuing 2 days. With the repeated injection of iso-OMPA, 3.0 μmol/kg every 48 h, there was a consistent but not statistically significant reduction in AChE regeneration at 4, 6, 12, and 18 days following sarin in all 3 ganglia. Similar treatment with iso-OMPA alone produced significant increases in ganglionic AChE at all these periods excepting the longest. The daily injection of iso-OMPA for 6 days, which maintained ganglionic BuChE at approx 2% of the control values, produced significant reductions in AChE regeneration, but again significant increases in ganglionic AChE levels in cats that did not receive sarin. The IO muscle did not exhibit these effects. A working hypothesis is proposed, that BuChE is a precursor of ganglionic AChE, and that the level of BuChE participates in the regulation of AChE synthesis by inhibition of a preceding rate-limiting step.  相似文献   

18.
Accompanying the gradual rise in the average age of the population of most industrialized countries is a regrettable progressive rise in the number of individuals afflicted with age-related neurodegenerative disorders, epitomized by Alzheimer's disease (AD) but, additionally, including Parkinson's disease (PD) and stroke. The primary therapeutic strategy, to date, involves the use of cholinesterases inhibitors (ChEIs) to amplify residual cholinergic activity. The enzyme, acetylcholinesterase (AChE), along with other elements of the cholinergic system is depleted in the AD brain. In contrast, however, its sister enzyme, butyrylcholinesterase (BuChE), that likewise cleaves acetylcholine (ACh), is elevated and both AChE and BuChE co-localize in high amounts with the classical pathological hallmarks of AD. The mismatch between increased brain BuChE and depleted levels of both ACh and AChE, particularly late in the disease, has supported the design and development of new ChEIs with a preference for BuChE; exemplified by the novel agent, cymserine, whose binding kinetics are characterized for the first time. Specifically, as assessed by the Ellman method, cymserine demonstrated potent concentration-dependent binding with human BuChE. The IC50 was determined as 63 to 100 nM at the substrate concentration range of 25 to 800 microM BuSCh. In addition, the following new binding constants were investigated for human BuChE inhibition by cymserine: T(FPnubeta), K(nubeta), K(Bs), K(MIBA), M(IC50), D(Sc), R(f), (O)K(m), OIC100, K(sl), theta(max) and R(i). These new kinetic constants may open new avenues for the kinetic study of the inhibition of a broad array of other enzymes by a wide variety of inhibitors. In synopsis, cymserine proved to be a potent inhibitor of human BuChE in comparison to its structural analogue, phenserine.  相似文献   

19.
Looking at cholinesterases (ChEs) changes in age-related mental impairment, the expression of ChEs in brain of senescence accelerated-resistant (SAMR1) and senescence accelerated-prone (SAMP8) mice was studied. Acetylcholinesterase (AChE) activity was unmodified and BuChE activity increased twofold in SAMP8 brain. SAMR1 brain contained many AChE-T mRNAs, less BuChE and PRiMA mRNAs and scant AChE-R and AChE-H mRNAs. Their content unchanged in SAMP8 brain. Amphiphilic (G(4)(A)) and hydrophilic (G(4)(H)) AChE and BuChE tetramers, besides amphiphilic dimers (G(2)(A)) and monomers (G(1)(A)) were identified in SAMR1 brain and their distribution was little modified in SAMP8 brain. Blood plasma does not seem to provide the excess of BuChE activity in SAMP8 brain; it probably arises from glial cell changes owing to astrocytosis.  相似文献   

20.
A series of O,O-diethyl-1-(N-alpha-hydrohexafluoroisobutyryl)aminoalkylphos phonates (APh) has been synthesized and their interaction with human erythrocyte acetylcholinesterase (AChE) and with horse serum butyrylcholinesterase (BuChE) studied. Most of the APhs inactivated the cholinesterases irreversible through formation of the enzyme-inhibitor intermediate. The inactivation rate constants and the enzyme-inhibitor intermediate dissociation constants are calculated. The quantitative structure-activity relationships including both hydrophobic and calculated steric parameters of substituents are developed for APh--ChE interactions. Molecular mechanics (programme MM2) was used for determining steric parameters (Es). On the basis of QSAR models analysis it was concluded that hydrophobic interactions play an essential role in APh--AChE binding, whereas for APh--BuChE binding steric interactions are essential. Presence of at least two APh binding centres on the surface of AChE and BuChE is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号