首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Majid MA  Smith VA  Easty DL  Baker AH  Newby AC 《FEBS letters》2002,529(2-3):281-285
C-terminal domain tissue inhibitor of metalloproteinases-3 (TIMP-3) mutations cause the rare hereditary blindness Sorsby's fundus dystrophy (SFD), which involves loss of retinal pigment epithelial (RPE) cells. Since wild-type TIMP-3 causes apoptosis, we investigated whether SFD TIMP-3 might kill RPE and other cells. Plasmid-mediated overexpression of Ser-156, Gly-167, Tyr-168 and Ser-181 SFD mutant TIMP-3 decreased RPE viability to 22+/-8, 20+/-6, 32+/-5, 30+/-12% (SFD mutants all P<0.01 versus wild-type 50+/-8%) and similarly increased propidium iodide staining and in situ end labelling. Adenovirus-mediated overexpression of the Gly-167 mutant also caused RPE apoptosis dose-dependently. Apoptosis of RPE cells might therefore contribute to the pathology of SFD.  相似文献   

2.
The TIMP family of matrix metalloproteinase inhibitors consists of four members, of which TIMP-1, -2 and -4 are secreted, freely diffusible proteins, whereas TIMP-3 is ECM-associated. Mutations in the TIMP3 gene have been linked to Sorsby's fundus dystrophy (SFD), an autosomal dominant inherited retinal degenerative disease that leads to blindness. The SFD mutations characterized result in introduction of an unpaired cysteine residue in the C-terminal domain of TIMP-3. We have expressed four SFD mutant TIMP-3 proteins in baby hamster kidney (BHK) cells and evaluated their characteristics alongside wild-type TIMP-3. Analysis of the mutant proteins (Ser156Cys, Gly167Cys, Tyr168Cys and Ser181Cys) by SDS-PAGE and reverse zymography revealed that each of the mutants retained gelatinase A and gelatinase B inhibitory activity, and were localized to the ECM. Association rate constants for Ser156Cys TIMP-3 with gelatinase-A, gelatinase-B, stromelysin-1 and collagenase-3 were only moderately reduced compared to wild-type TIMP-3. However, all of the mutants displayed aberrant protein-protein interactions, resulting in the presence of additional proteins or complexes in ECM preparations. Two of the mutants (Ser156Cys and Ser181Cys) showed a marked propensity to form multiple higher molecular-weight complexes that retained TIMP activity on reverse zymography. Expression of the SFD mutant TIMP-3 (and to a lesser extent, wild-type TIMP-3) proteins in BHK cells conferred increased cell adhesiveness to the ECM. Our findings indicate that the pathogenesis of Sorsby's fundus dystrophy cannot be attributed to a failure to localize SFD TIMP-3 proteins to the ECM or defects in MMP inhibition, but may involve the formation of aberrant TIMP-3-containing protein complexes and altered cell adhesion.  相似文献   

3.
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular degeneration of late onset. A key feature of the disease is the thickening of Bruch's membrane, an ECM structure located between the RPE and the choroid. SFD is caused by mutations in the gene encoding the ECM-associated tissue inhibitor of metalloproteases-3 (TIMP3). We have recently generated two Timp3 gene-targeted mouse lines, one deficient for the murine gene (Timp3-/-) and one carrying an SFD-related S156C mutation. Based on extracts and cell cultures derived from tissues of these animals we now evaluated TIMP3 functionality and its contribution to SFD. We show that the activity levels of TIMP3 target proteases including TACE, ADAMTS4/5 and aggrecan-cleaving MMPs are similar in Timp3S156/+ and Timp3S156C/S156C mice when compared to controls. In Timp3-/- mice, a significant enhancement of enzyme activity was observed for TACE but not for ADAMTS4/5 and MMPs indicating a compensatory effect of other inhibitors regulating the latter two groups of proteases. Fibrin bead assays show that angiogenesis in Timp3S156/+ and Timp3S156C/S156C mice is not altered whereas increased formation of capillary tubes was observed in Timp3-/- animals over controls. Rescue experiments using recombinant proteins demonstrate that the inhibitory activities of TIMP3 towards TACE and aggrecan-cleaving MMPs as well as the anti-angiogenic properties of TIMP3 are not impaired by SFD mutation S156C. We finally demonstrate that wild-type and S156C-TIMP3 proteins block the binding of VEGF to its receptor VEGFR2 to a similar extent. Taken together, this study shows that S156C-TIMP3 retains its known functional properties suggesting that causes other than an imbalance in protease or angiogenic activities represent the primary molecular defect underlying SFD.  相似文献   

4.
5.
Tissue inhibitors of metalloproteinases (TIMPs) regulate tumor growth, progression, and angiogenesis in a variety of experimental cancer models and in human malignancies. Results from numerous studies have revealed important differences between TIMP family members in their ability to inhibit angiogenic processes in vitro and angiogenesis in vivo despite their universal ability to inhibit matrix metalloproteinase (MMP) activity. To address these differences, a series of structure-function studies were conducted to identify and to characterize the anti-angiogenic domains of TIMP-2, the endogenous MMP inhibitor that uniquely inhibits capillary endothelial cell (EC) proliferation as well as angiogenesis in vivo. We demonstrate that the COOH-terminal domain of TIMP-2 (T2C) inhibits the proliferation of capillary EC at molar concentrations comparable with those previously reported for intact TIMP-2, while the NH2-terminal domain (T2N), which inhibits MMP activity, has no significant anti-proliferative effect. Interestingly, although both T2N and T2C inhibited embryonic angiogenesis, only T2C resulted in the potent inhibition of angiogenesis driven by the exogenous addition of angiogenic mitogen, suggesting that MMP inhibition alone may not be sufficient to inhibit the aggressive neovascularization characteristic of aberrant angiogenesis. We further mapped the anti-proliferative activity of T2C to a 24-amino acid peptide corresponding to Loop 6 of TIMP-2 and show that Loop 6 is a potent inhibitor of both embryonic and mitogen-stimulated angiogenesis in vivo. These findings demonstrate that TIMP-2 possesses two distinct types of anti-angiogenic activities which can be uncoupled from each other, the first represented by its MMP-dependent inhibitory activity which can inhibit only embryonic neovascularization and the second represented by an MMP-independent activity which inhibits both normal angiogenesis and mitogen-driven angiogenesis in vivo. In addition, we report, for the first time, the discovery of Loop 6 as a novel and potent inhibitor of angiogenesis.  相似文献   

6.
The tissue inhibitor of metalloproteinases-3 (TIMP3) is a multifunctional protein tightly associated with the extracellular matrix (ECM). A specific type of mutation in TIMP3 which results in potentially unpaired cysteine residues at the C-terminus of the protein has been shown to cause Sorsby fundus dystrophy (SFD), an autosomal dominant retinopathy of late onset. An early finding in SFD is a striking accumulation of protein and lipid material in Bruch's membrane, a multilayered ECM structure located between the choroid and the RPE. To study the molecular mechanisms underlying SFD pathology, we recently generated two mouse lines, one deficient in Timp3 (Timp3(-/-)) and one carrying an SFD-related mutation in the orthologous murine Timp3 gene (Timp3(S156C/S156C)). We now established immortalized fibroblast cells from the mutant mouse strains and provide evidence that the various cell lines display distinct morphological and physiological features that are dependent on the mutational status of the Timp3 protein in the secreted ECM. We show that matrix metalloproteinase (MMP) activity and inhibitory properties of Timp3 are not affected by the SFD-associated mutation. We further demonstrate that Timp3(S156C) protein accumulates in the ECM of the mutant fibroblast cells and that this accumulation is not due to a prolonged turnover rate of mutant vs. normal Timp3. We also show that the relative abundance of mutant and normal Timp3 in the ECM has no measurable effects on cellular phenotypes. Together, these findings suggest (i) a functional role of normal Timp3 in pathways determining cellular morphology and (ii) a loss of this particular function as a consequence of the Ser156Cys mutation. We therefore hypothesize that SFD pathogenesis is due to a loss-of-function mutation in TIMP3.  相似文献   

7.
Sorsby's fundus dystrophy (SFD) is a dominantly inherited degenerative disease of the retina that leads to loss of vision in middle age. It has been shown to be caused by mutations in the gene for tissue inhibitor of metalloproteinases-3 (TIMP-3). Five different mutations have previously been identified, all introducing an extra cysteine residue into exon 5 (which forms part of the C-terminal domain) of the TIMP-3 molecule; however, the significance of these mutations to the disease phenotype was unknown. In this report, we describe the expression of several of these mutated genes, together with a previously unreported novel TIMP-3 mutation from a family with SFD that results in truncation of most of the C-terminal domain of the molecule. Despite these differences, all of these molecules are expressed and exhibit characteristics of the normal protein, including inhibition of metalloproteinases and binding to the extracellular matrix. However, unlike wild-type TIMP-3, they all form dimers. These observations, together with the recent finding that expression of TIMP-3 is increased, rather than decreased, in eyes from patients with SFD, provides compelling evidence that dimerized TIMP-3 plays an active role in the disease process by accumulating in the eye. Increased expression of TIMP-3 is also observed in other degenerative retinal diseases, including the more severe forms of age-related macular degeneration, the most common cause of blindness in the elderly in developed countries. We hypothesize that overexpression of TIMP-3 may prove to be a critical step in the progression of a variety of degenerative retinopathies.  相似文献   

8.
Proteolysis of vascular basement membranes and surrounding extracellular matrix is a critical early step in neovascularization. It requires alteration of the balance between matrix metalloproteinases (MMPs) and proteins that bind to and inactivate MMPs, tissue inhibitors of metalloproteinases (TIMPs). TIMP-1 has been demonstrated to inhibit neovascularization in chick chorioallantoic membranes. However, TIMP-1 has also been shown to either promote or inhibit cell proliferation and migration in different settings. To determine whether genetic alteration of the MMP/TIMP-1 ratio would alter retinal neovascularization, we crossed mice that express vascular endothelial growth factor (VEGF) in photoreceptors with TIMP-1-deficient mice or mice that overexpress TIMP-1. Compared to VEGF transgene-positive/TIMP-1-sufficient mice, VEGF transgene-positive/TIMP-1-deficient mice showed smaller neovascular lesions. There was also no difference between the two groups of mice in the appearance of the neovascularization by light or electron microscopy. Compound VEGF/TIMP-1 transgenic mice had increased expression of both VEGF and TIMP-1 in the retina, and had more neovascularization than mice that had increased expression of VEGF alone. These gain- and loss-of-function data suggest that alteration of the TIMP-1/MMP ratio modulates retinal neovascularization in a complex manner and not simply by altering the proteolytic activity and thereby invasiveness of endothelial cells.  相似文献   

9.
Despite the importance of MMP activity in the regulation of angiogenesis, relatively little is known about the role of TIMP-4, the most recently discovered endogenous MMP inhibitor, in modulating neovascularization. It has largely been assumed that all TIMPs are capable of inhibiting angiogenesis in vivo. However, it is now widely appreciated that TIMPs-1, -2, and -3 differ significantly in their ability to modulate angiogenic processes in vitro and angiogenesis in vivo. In order to study the effect of TIMP-4 in controlling angiogenesis, we have cloned and expressed TIMP-4 in a Pichia pastoris expression system, purified it to homogeneity, and tested its ability to regulate angiogenesis in vivo and in vitro. Our studies demonstrate that TIMP-4 is an inhibitor of capillary endothelial cell migration, but not of proliferation or of angiogenesis in vivo.  相似文献   

10.
Gingival fibroblast cell lines were derived from Sorsby's fundus dystrophy (SFD) patients carrying the S181C TIMP3 and the E139X TIMP3 mutations. These cell lines were grown in culture to study expression of the wild-type and mutant tissue inhibitor of metalloproteinase 3 (TIMP3) alleles from a normal diploid cell type. Firstly, patient cells were found to co-express the wild-type and mutant TIMP3 alleles, S181C TIMP3 or E139X TIMP3, at the mRNA level using restriction fragment length polymorphism (RFLP) analysis. A SpeI RFLP for E139X TIMP3 is described. Low levels of endogenous TIMP3 protein expression were elevated using the natural polysaccharide calcium pentosan polysulfate (CaPPs) in combination with the cytokine IL-1alpha. Immunoblotting detected protein expression from both wild-type and mutant alleles, S181C TIMP3 or E139X TIMP3. S181C TIMP3 from these cells was found to dimerise and retain MMP2 inhibitory activity. To facilitate studies of the E139X TIMP3 protein, the allele was expressed using HighFive insect cells. In this cell type, the E139X TIMP3 was synthesised as a mixture of monomer and dimer. Both monomeric and dimeric E139X TIMP3 protein retained MMP2 inhibitory activity in gelatin zymography. Expression of mutant E139X or S181C TIMP3 protein from a normal diploid patient-derived fibroblast cell had no effect on either MMP2 or MMP9 expression or activation whilst transcribed from their normal promoter context.  相似文献   

11.
The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration.  相似文献   

12.

Background

Vision loss due to vascular disease of the retina is a leading cause of blindness in the world. Retinal angiomatous proliferation (RAP) is a subgroup of neovascular age-related macular degeneration (AMD), whereby abnormal blood vessels develop in the retina leading to debilitating vision loss and eventual blindness. The novel mouse strain, neoretinal vascularization 2 (NRV2), shows spontaneous fundus changes associated with abnormal neovascularization. The purpose of this study is to characterize the induction of pathologic angiogenesis in this mouse model.

Methods

The NRV2 mice were examined from postnatal day 12 (p12) to 3 months. The phenotypic changes within the retina were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, and immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software.

Results

We found that NRV2 mice develop multifocal retinal depigmentation in the posterior fundus. Depigmented lesions developed vascular leakage observed by fluorescein angiography. The spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p)15 and extended toward retinal pigment epithelium (RPE). By three months of age, histological analysis revealed encapsulation of the neovascular lesion by the RPE in the photoreceptor cell layer and subretinal space.

Conclusions

The NRV2 mouse strain develops early neovascular lesions within the retina, which grow downward towards the RPE beginning at p15. This retinal neovascularization model mimics early stages of human retinal angiomatous proliferation (RAP) and will likely be a useful in elucidating targeted therapeutics for patients with ocular neovascular disease.  相似文献   

13.
Tissue inhibitors of metalloproteinases (TIMPs) while originally characterized as inhibitors of matrix metalloproteinases (MMPs) have recently been shown to have a wide range of functions that are independent of their MMP inhibitory properties. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a potent inhibitor of VEGF-mediated angiogenesis and neovascularization through its ability to block the binding of VEGF to its receptor VEGFR-2. To identify and characterize the anti-angiogenic domain of TIMP-3, structure function analyses and synthetic peptide studies were performed using VEGF-mediated receptor binding, signaling, migration and proliferation. In addition, the ability of TIMP-3 peptides to inhibit CNV in a mouse model was evaluated. We demonstrate that the anti-angiogenic property resides in the COOH-terminal domain of TIMP-3 protein which can block the binding of VEGF specifically to its receptor VEGFR-2, but not to VEGFR-1 similar to the full-length wild-type protein. Synthetic peptides corresponding to putative loop 6 and tail region of TIMP-3 have anti-angiogenic properties as determined by inhibition of VEGF binding to VEGFR-2, VEGF-induced phosphorylation of VEGFR-2 and downstream signaling pathways as well as endothelial cell proliferation and migration in response to VEGF. In addition, we show that intravitreal administration of TIMP-3 peptide could inhibit the size of laser-induced choroidal neovascularization lesions in mice. Thus, we have identified TIMP-3 peptides to be efficient inhibitors of angiogenesis and have a potential to be used therapeutically in diseases with increased neovascularization.  相似文献   

14.
Retinal pigment epithelium (RPE) exerts critical roles in the maintenance of the normal functions of the retina, whereas RPE dysfunction can induce retina neovascularization. p75 neurotrophin receptor (p75NTR) has been shown to play essential roles in angiogenesis. However, the function of p75NTR in the RPE remains unclear. In the present study, we demonstrated that p75NTR was highly expressed in the human choroidal neovascularization membranes. For in vitro study, RPE was exposed to hypoxia, and a knockdown of p75NTR was achieved via lentivirus-mediated RNA interference. The results showed that hypoxia induced the expression of p75NTR in the RPE, and the knockdown of p75NTR rescued RPE proliferation activity and inhibited apoptosis which induced by hypoxia. After the deletion of p75NTR, RPE-secreted pro-angiogenic factors (vascular endothelial growth factor and platelet-derived growth factor), inflammatory factors [interleukin 1 beta (IL1β), IL18, and stromal cell-derived factor 1], and matrix metalloproteinases (MMPs) (MMP3 and MMP9) were down-regulated under hypoxic conditions. While the RPE secreted anti-angiogenic factors (pigment epithelium-derived factor) and angiostatin, the tissue inhibitors of metalloproteinases (TIMPs) (TIMP-1 and TIMP-3) were up-regulated after the knockdown of p75NTR. The human umbilical vein endothelial tube formation ability can be inhibited when it is co-cultured with the supernatant extract from p75NTR-knockdown RPE under hypoxic induction. These results suggest that the knockdown of p75NTR suppressed pro-angiogenic factors which induced by hypoxia while promoting the anti-angiogenesis-related factors in the RPE. It is indicated that p75NTR could be a potential therapeutic target for RPE hypoxia or oxidative stress diseases.  相似文献   

15.
16.
BackgroundPathological retinal neovascularization is a disease characterized by abnormal angiogenesis in retina that is a major cause of blindness in humans. Previous reports have highlighted the involvement of microRNAs (miRNAs) in retinal angiogenesis. Therefore, we aimed at exploring the mechanism underlying miR-203 regulating the progression of pathological retinal neovascularization.MethodsInitially, the mouse model of pathological retinal neovascularization disease was established and the hypoxia-induced human retinal microvascular endothelial cells (HRMECs) were generated. Then, miR-203 and SNAI2 expression in HRMECs and retinal tissues was examined. Subsequently, the effects of miR-203 and SNAI2 on viability, migration, apoptosis and angiogenesis of HRMECs were investigated, with the expression of Bax, Ki-67, MMP-2, MMP-9, VEGF and CD34 measured. Finally, the regulation of miR-203 or SNAI2 on GSK-3β/β-catenin pathway was determined through examining the levels of phosphorylated p-GSK-3β and β-catenin.ResultsPoorly expressed miR-203 and highly expressed SNAI2 were found in HRMECs and retinal tissues of pathological retinal neovascularization. Importantly, overexpressed miR-203 or silencing SNAI2 inhibited viability, migration and angiogenesis but promoted apoptosis of HRMECs, evidenced by elevated Bax expression but reduced expression of Ki-67, MMP-2, MMP-9, VEGF and CD34. Moreover, overexpression of miR-203 was found to repress the GSK-3β/β-catenin pathway by downregulating SNAI2.ConclusionCollectively, this study demonstrated that overexpression of miR-203 suppressed the angiogenesis in mice with pathological retinal neovascularization disease via the inactivation of GSK-3β/β-catenin pathway by inhibiting SNAI2, which provided a novel therapeutic insight for pathological retinal neovascularization disease.  相似文献   

17.
Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a matrix-bound inhibitor of matrix metalloproteinases. Mutations in the Timp-3 gene cause Sorsby fundus dystrophy (SFD), a hereditary macular degenerative disease. The pathogenic mechanisms responsible for the disease phenotype are unknown. In an in vivo quest for binding partners of the TIMP-3 protein in the subretina, we identified epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1, also known as fibulin 3) as a strong interacting protein. The COOH-terminal end of TIMP-3 was involved in the interaction. Interestingly, a missense mutation in EFEMP1 is responsible for another hereditary macular degenerative disease, Malattia Leventinese (ML). Both SFD and ML have strong similarities to age-related macular degeneration (AMD), a major cause of blindness in the elderly population of the Western hemisphere. Our results were supported by significant accumulation and expression overlap of both TIMP-3 and EFEMP1 between the retinal pigment epithelia and Bruch membrane in the eyes of ML and AMD patients. These results provide the first link between two different macular degenerative disease genes and imply the possibility of a common pathogenic mechanism behind different forms of macular degeneration.  相似文献   

18.
Tissue inhibitor of metalloproteinase (TIMP-1) is a natural protease inhibitor of matrix metalloproteinases (MMPs). Recent studies revealed a novel function of TIMP-1 as a potent inhibitor of apoptosis in mammalian cells. However, the mechanisms by which TIMP-1 exerts its anti-apoptotic effect are not understood. Here we show that TIMP-1 activates cell survival signaling pathways involving focal adhesion kinase, phosphatidylinositol 3-kinase, and ERKs in human breast epithelial cells to TIMP-1. TIMP-1-activated cell survival signaling down-regulates caspase-mediated classical apoptotic pathways induced by a variety of stimuli including anoikis, staurosporine exposure, and growth factor withdrawal. Consistently, down-regulation of TIMP-1 expression greatly enhances apoptotic cell death. In a previous study, substitution of the second amino acid residue threonine for glycine in TIMP-1, which confers selective MMP inhibition, was shown to obliterate its anti-apoptotic activity in activated hepatic stellate cells suggesting that the anti-apoptotic activity of TIMP-1 is dependent on MMP inhibition. Here we show that the same mutant inhibits apoptosis of human breast epithelial cells, suggesting different mechanisms of TIMP-1 regulation of apoptosis depending on cell types. Neither TIMP-2 nor a synthetic MMP inhibitor protects breast epithelial cells from intrinsic apoptotic cell death. Furthermore, TIMP-1 enhances cell survival in the presence of the synthetic MMP inhibitor. Taken together, the present study unveils some of the mechanisms mediating the anti-apoptotic effects of TIMP-1 in human breast epithelial cells through TIMP-1-specific signal transduction pathways.  相似文献   

19.
Fas ligand (CD95 ligand) controls angiogenesis beneath the retina   总被引:15,自引:0,他引:15  
A principal cause of blindness is subretinal neovascularization associated with age-related macular degeneration. Excised neovascular membranes from patients with age-related macular degeneration demonstrated a pattern of Fas+ new vessels in the center of the vascular complex, surrounded by FasL+ retinal pigment epithelial cells. In a murine model, Fas (CD95)-deficient (Ipr) and FasL-defective (gld) mice had a significantly increased incidence of neovascularization compared with normal mice. Furthermore, in gld mice there is massive subretinal neovascularization with uncontrolled growth of vessels. We found that cultured choroidal endothelial cells were induced to undergo apoptosis by retinal pigment epithelial cells through a Fas-FasL interaction. In addition, antibody against Fas prevented vascular tube formation of choroidal endothelial cells derived from the eye in a three-dimensional in vitro assay. Thus, FasL expressed on retinal pigment epithelial cells may control the growth and development of new subretinal vessels that can damage vision.  相似文献   

20.
Tissue inhibitor of metalloproteinases-3 (TIMP3) is one of four members of a family of proteins that were originally classified according to their ability to inhibit matrix metalloproteinases (MMP). TIMP3, which encodes a potent angiogenesis inhibitor, is mutated in Sorsby fundus dystrophy, a macular degenerative disease with submacular choroidal neovascularization. In this study we demonstrate the ability of TIMP3 to inhibit vascular endothelial factor (VEGF)-mediated angiogenesis and identify the potential mechanism by which this occurs: TIMP3 blocks the binding of VEGF to VEGF receptor-2 and inhibits downstream signaling and angiogenesis. This property seems to be independent of its MMP-inhibitory activity, indicating a new function for this molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号