首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rodin S  Georgiev P 《BioTechniques》2005,39(6):871-876
Studies of regulatory systems in transgenic Drosophila are often compromised by possible genomic position effects on gene expression. As a result, it is desirable to be able to manipulate multiple regulatory elements in a single transgene construct. We developed an I-SceI endonuclease-based method to efficiently delete preassigned sequences from transgenes with the use of direct repeat sequences of just 126 nucleotides. This system can be used in combination with the existing cre-lox and FLP-FRT recombinational mechanisms in order to modify up to three regulatory regions in a given transgene. We validated the utility of our combination approach by demonstrating new properties of the Fab-7 insulator.  相似文献   

2.
3.
Selection, adaptation, and bacterial operons   总被引:6,自引:0,他引:6  
B G Hall 《Génome》1989,31(1):265-271
Bacteria are especially useful as systems to study the molecular basis of adaptive evolution. Selection for novel metabolic capabilities has allowed us to study the evolutionary potential of organisms and has shown that there are three major "strategies" for the evolution of new metabolic functions. (i) Regulatory mutations may allow a gene to be expressed under unusual conditions. If the product of that gene is already active toward a novel resource, then a regulatory mutation alone may confer a new metabolic capability. (ii) Structural gene mutations may alter the catalytic properties of enzymes so that they can act on novel substrates. These structural gene mutations may dramatically improve catalytic capabilities, and in some cases they can confer entirely new capabilities upon enzymes. In most cases both regulatory and structural gene mutations are required for the effective evolution of new metabolic functions. (iii) Operons that are normally silent, or cryptic, may be activated by either point mutations or by the action of mobile genetic elements. When activated, these operons can provide entirely new pathways for the metabolism of novel resources. Selection can also play a role in modulating the probability that a particular adaptive mutation will occur. In this paper I present evidence that a specific adaptive mutation, reversion of the metB1 mutation, occurs 60 to 80 times more frequently during prolonged selection on plates under conditions where the members of the population are not growing than it does in growing cells under nonselective conditions. This selective condition, methionine starvation, does not increase the frequency of other mutations unrelated to methionine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The molecular biology of the human renin gene is reviewed. This 12.5 kb gene contains 10 exons and 9 introns. In its 5' flanking region, major control elements are present. These include promoters and enhancers as well as regulatory elements. The combined action of these elements would result in tissue specific expression and regulation of the gene. In addition to the control at the gene expression level, renin is also regulated at the posttranslational and secretory levels. The translational product of renin mRNA is preprorenin, which is cotranslationally cleaved to prorenin, an inactive precursor of renin. The majority of new synthesized human prorenin is constitutively secreted. However, prorenin is also processed intracellularly to the mature single chain active renin which is stored in secretory granules. Active renin is released by a regulated mechanism which can be stimulated by cAMP and other secretagogues. Studies are under way to examine the responses of renin gene expression, biosynthesis and secretion to various physiological conditions.  相似文献   

5.
Targeted mRNA translation is emerging as a critical mechanism to control gene expression during developmental processes. Exciting new findings have revealed a critical role for regulatory elements within the mRNA untranslated regions to direct the timing of mRNA translation. Regulatory elements can be targeted by sequence‐specific binding proteins to direct either repression or activation of mRNA translation in response to developmental signals. As new regulatory elements continue to be identified it has become clear that targeted mRNAs can contain multiple regulatory elements, directing apparently contradictory translational patterns. How is this complex regulatory input integrated? In this review, we focus on a new challenge area—how sequence‐specific RNA binding proteins respond to developmental signals and functionally integrate to regulate the extent and timing of target mRNA translation. We discuss current understanding with a particular emphasis on the control of cell cycle progression that is mediated through a complex interplay of distinct mRNA regulatory elements during Xenopus oocyte maturation. Mol. Reprod. Dev. 77: 662–669, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
9.
10.
11.
Manipulation of the eukaryotic genome has contributed to the progress in our knowledge of multicellular organisms but has also ameliorated our experimental strategies. Biological questions can now be addressed with more efficiency and reproducibility. There are new and varied strategies for gene transfer and sequence manipulation with improved methodologies that facilitate the acquisition of results. Cellular systems and transgenic animals have demonstrated their invaluable benefits. In this review, I present an overview of the methods of gene transfer with particular attention to cultured cell lines and large-scale sequence vectors, like artificial chromosomes, with the possibility of their manipulation based on homologous recombination strategies. Alternative strategies of gene transfer, including retroviral vectors, are also described and the applications of such methods are discussed. Finally, several comments are made about the influence of chromatin structure on gene expression. Recent experimental data have shown that for convenient stable transgene expression, the influence of chromatin structure should be seriously taken into account. Novel chromatin regulatory and structural elements are proposed as an alternative for proper and sustained gene expression. These chromatin elements are facing a new era in transgenesis and we are probably beginning a new generation of gene and cancer therapy vectors.  相似文献   

12.
MOTIVATION: In silico genome analysis of bacteriophage genomes focuses mainly on gene discovery and functional assignment. The search for regulatory elements contained within these genome sequences is often based on prior knowledge of other genomic elements or on learning algorithms of experimentally determined data, potentially leading to a biased prediction output. The PHage In silico Regulatory Elements (PHIRE) program is a standalone program in Visual Basic. It performs an algorithmic string-based search on bacteriophage genome sequences to uncover and extract subsequence alignments hinting at regulatory elements contained within these genomes, in a deterministic manner without any prior experimental or predictive knowledge. RESULTS: The PHIRE program was tested on known phage genomes with experimentally verified regulatory elements. PHIRE was able to extract phage regulatory sequences correctly for bacteriophages T7, T3, YeO3-12 and lambda, based solely on the genome sequence. For 11 bacteriophages, new predictions of conserved phage-specific putative regulatory elements were made, further corroborating this approach. AVAILABILITY: http://www.agr.kuleuven.ac.be/logt/PHIRE.htm. Freely available for academic use. Commercial users should contact the corresponding author.  相似文献   

13.
Preservation of duplicate genes by complementary, degenerative mutations   总被引:106,自引:0,他引:106  
Force A  Lynch M  Pickett FB  Amores A  Yan YL  Postlethwait J 《Genetics》1999,151(4):1531-1545
The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between entropic decay and chance acquisition of an advantageous regulatory mutation.Sidow 1996(p. 717) On one hand, it may fix an advantageous allele giving it a slightly different, and selectable, function from its original copy. This initial fixation provides substantial protection against future fixation of null mutations, allowing additional mutations to accumulate that refine functional differentiation. Alternatively, a duplicate locus can instead first fix a null allele, becoming a pseudogene.Walsh 1995 (p. 426) Duplicated genes persist only if mutations create new and essential protein functions, an event that is predicted to occur rarely.Nadeau and Sankoff 1997 (p. 1259) Thus overall, with complex metazoans, the major mechanism for retention of ancient gene duplicates would appear to have been the acquisition of novel expression sites for developmental genes, with its accompanying opportunity for new gene roles underlying the progressive extension of development itself.Cooke et al. 1997 (p. 362)  相似文献   

14.
15.
16.
17.
18.
Q Lu  L L Wallrath    S C Elgin 《The EMBO journal》1995,14(19):4738-4746
The regulatory region of Drosophila melanogaster hsp26 includes a positioned nucleosome located between the two DNase I hypersensitive (DH) sites that encompass the critical heat shock elements (HSEs). To test the role of this nucleosome in regulated expression, transgenic flies containing hsp26-lacZ fusion genes with alterations in the nucleosome-associated region have been generated. The positioned nucleosome is associated with a DNA sequence that does not itself contain any critical regulatory elements for heat shock-inducible expression. The nucleosome-associated sequence can be deleted, reversed, duplicated or replaced by a random sequence with no significant effect on DH site formation and gene expression. Analyses of hsp26 and hsp70 transgenes with spacing changes within the promoter region indicate that the location of the (CT)n.(GA)n elements dictates the location of DH site formation. Wrapping the DNA between the regulatory elements around a nucleosome is as effective for gene expression as placing the regulatory elements close to each other. A loss of inducible gene expression was observed when the nucleosome-associated DNA was replaced with sequences which appear to misdirect nucleosome placement. The results indicate considerable flexibility in the spacing between DH regulatory sites.  相似文献   

19.
20.
Long M  Wang W  Zhang J 《Gene》1999,238(1):135-141
This paper deals with a general question posed by the origin of new processed chimerical genes: when a new retrosequence inserts into a new genome position, how does it become activated and acquire novel protein function by recruiting new functional domains and regulatory elements? Jingwei (jgw), a newly evolved functional gene with a chimerical structure in Drosophila, provides an opportunity to examine such questions. The source of its exon encoding C-terminal peptide has been identified as an Adh retrosequence, which extends the concept of exon shuffling from recombination to retroposition as a general molecular mechanism for the origin of a new gene. However, the origin of 5' exons remains unclear. We examined two hypotheses concerning the origin of these non-Adh-derived jgw exons: (i) these exons might originate from a unique genomic sequence that fortuitously evolved a standard intron-exon structure and regulatory sequence for jgw; (ii) these exons might be a duplicate of an unrelated previously existing gene. Genomic Southern analysis, in conjunction with construction and screening of a genomic bookshelf (sub-library), was conducted in a group of Drosophila species. The results demonstrated that there are duplicate genes containing the same structure as the recruited portion of jgw. We name this duplicate gene in Drosophila teissieri and Drosophila yakuba and its orthologous gene in Drosophila melanogaster as yellow-emperor (ymp). Thus, the 5' exons/introns originated from a previously existing gene that provided new modules with specific sub-function to create jgw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号