首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The rational selection of optimal protein purification sequences, as well as mathematical models that simulate and allow optimization of chromatographic protein purification processes have been developed for purification procedures such as ion-exchange, hydrophobic interaction and gel filtration chromatography. This paper investigates the extension of such analysis to affinity chromatography both in the selection of chromatographic processes and in the use of the rate model for mathematical modelling and simulation. Two affinity systems were used: Blue Sepharose and Protein A. The extension of the theory developed previously for ion-exchange and HIC chromatography to affinity separations is analyzed in this paper. For the selection of operations two algorithms are used. In the first, the value of η, which corresponds to the efficiency (resolution) of the actual chromatography and, Σ, which determines the amount of a particular contaminant eliminated after each separation step, which determines the purity, have to be determined. It was found that the value of both these parameters is not generic for affinity separations but will depend on the type of affinity system used and will have to be determined on a case by case basis. With Blue Sepharose a salt gradient was used and with Protein A, a pH gradient. Parameters were determined with individual proteins and simulations of the protein mixtures were done. This approach allows investigation of chromatographic protein purification in a holistic manner that includes ion-exchange, HIC, gel filtration and affinity separations for the first time.  相似文献   

2.
Peptide libraries can be used to identify ligands that bind specifically to a desired protein. These peptides may have significant advantages as specific ligands for affinity chromatography separations. This article describes the use of one of such peptide, Try-Asn-Phe-Glu-Val-Leu, as a ligand for the purification of S-protein using affinity chromatography. General strategies for peptide immobilization are discussed and the conditions for peptide immobilization to Emphazetrade mark gel are optimized. The effects of peptide orientation and peptide densities on protein binding are studied. Results indicate that the peptide affinity is not affected by the orientation of the peptide during immobilization, but association constants can be reduced by one order of magnitude when compared with the values in solution.With increased peptide density, the protein binding capacity of the gel increases, but both the percentage of peptide utilization and apparent binding constant between immobilized peptide and S-protein decrease. S-protein is separated from a mixture with BSA via affinity chromatography using specific elution with the peptide in solution.Finally, direct purification of S-protein from an enzymatic digestion mixture of ribonuclease A is demonstrated.(c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Design and selection of ligands for affinity chromatography   总被引:4,自引:0,他引:4  
Affinity chromatography is potentially the most selective method for protein purification. The technique has the purification power to eliminate steps, increase yields and thereby improve process economics. However, it suffers from problems regarding ligand stability and cost. Some of the most recent advances in this area have explored the power of rational and combinatorial approaches for designing highly selective and stable synthetic affinity ligands. Rational molecular design techniques, which are based on the ability to combine knowledge of protein structures with defined chemical synthesis and advanced computational tools, have made rational ligand design feasible and faster. Combinatorial approaches based on peptide and nucleic acid libraries have permitted the rapid synthesis of new synthetic affinity ligands of potential use in affinity chromatography. The versatility of these approaches suggests that, in the near future, they will become the dominant methods for designing and selection of novel affinity ligands with scale-up potential.  相似文献   

4.
Applications of affinity chromatography in proteomics   总被引:7,自引:0,他引:7  
Affinity chromatography is a powerful protein separation method that is based on the specific interaction between immobilized ligands and target proteins. Peptides can also be separated effectively by affinity chromatography through the use of peptide-specific ligands. Both two-dimensional electrophoresis (2-DE)- and non-2-DE-based proteomic approaches benefit from the application of affinity chromatography. Before protein separation by 2-DE, affinity separation is used primarily for preconcentration and pretreatment of samples. Those applications entail the removal of one protein or a class of proteins that might interfere with 2-DE resolution, the concentration of low-abundance proteins to enable them to be visualized in the gel, and the classification of total protein into two or more groups for further separation by gel electrophoresis. Non-2-DE-based approaches have extensively employed affinity chromatography to reduce the complexity of protein and peptide mixtures. Prior to mass spectrometry (MS), preconcentration and capture of specific proteins or peptides to enhance sensitivity can be accomplished by using affinity adsorption. Affinity purification of protein complexes followed by identification of proteins by MS serves as a powerful tool for generating a map of protein-protein interactions and cellular locations of complexes. Affinity chromatography of peptide mixtures, coupled with mass spectrometry, provides a tool for the study of protein posttranslational modification (PTM) sites and quantitative proteomics. Quantitation of proteomes is possible via the use of isotope-coded affinity tags and isolation of proteolytic peptides by affinity chromatography. An emerging area of proteomics technology development is miniaturization. Affinity chromatography is becoming more widely used for exploring PTM and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. More applications of affinity-based purification can be expected, including increasing the resolution in 2-DE, improving the sensitivity of MS quantification, and incorporating purification as part of multidimensional liquid chromatography experiments.  相似文献   

5.
As a complementary approach to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), multi-dimensional chromatography separation methods have been widely applied in all kinds of biological sample investigations. Multi-dimensional liquid chromatography (MDLC) coupled with bio-mass spectrometry (MS) is playing important roles in proteome research due to its high speed, high resolution and high sensitivity. Proteome analysis strategies mainly include bottom-up and top-down approaches which carry out biological sample separation based on peptide and protein levels, respectively. Electrophoretic methods combined with liquid chromatography like IEF-HPLC and HPLC-SDS-PAGE have been successful applied for protein separations. As for MDLC strategy, ion-exchange chromatography (IEX) together with reversed phase liquid chromatography (RPLC) is still a most widely used chromatography in proteome analysis, other chromatographic methods are also frequently used in protein pre-fractionations, while affinity chromatography is usually adopted for specific functional protein analysis. Recent MDLC technologies and applications to variety of proteome analysis have been achieved great development. A digest peptide-based approach as so-called "bottom-up" and intact protein-based approach "top-down" analysis of proteome samples were briefly reviewed in this paper. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as high-abundance protein depletion and chromatography array were also included in this review.  相似文献   

6.
Downstream processing of proteins is often a key factor in the overall process of satisfying product specifications and meeting current commercial demands. In this context, affinity chromatography and other techniques based on the affinity concept have revolutionized protein purification technology, although they have failed to demonstrate their broader applicability at the process scale. On the other hand, reactive dyes offer many advantages as pseudoaffinity media and in many occasions have successfully circumvented problems associated with conventional affinity ligands. The main features of reactive dyes include their broad spectrum of interaction with proteins, low cost, ready availability, high reactivity, ease of immobilization, and both biological and chemical stability. Consequently, dye-ligand media now find application in both analytical and process-scale purification of proteins by techniques such as low- and high-pressure performance affinity chromatography, affinity partitioning, and affinity precipitation.  相似文献   

7.
Affinity chromatography is a powerful technique for the purification of many proteins in human plasma. Applications cover the isolation of proteins for research purposes but also, to a large extent, for the production of therapeutic products. In industrial plasma fractionation, affinity chromatography has been found to be particularly advantageous for fine and rapid capture of plasma proteins from industrial plasma fractions pre-purified by ethanol fractionation or by ion-exchange chromatography. To date, affinity chromatography is being used in the production of various licensed therapeutic plasma products, such as the concentrates of Factor VIII, Factor IX, von Willebrand Factor, Protein C, Antithrombin III, and Factor XI. Most commonly used ligands are heparin, gelatin, murine antibodies, and, to a lesser extent, Cu(2+). Possible development of the use of affinity chromatography in industrial plasma fractionation should be associated to the current development of phage display and combinatorial chemistry. Both approaches may lead to the development of tailor-made synthetic ligands that would allow implementation of protein capture technology, providing improved productivity and yield for plasma products.  相似文献   

8.
Small molecules that bind proteins can be used as ligands for protein purification and for investigating protein-protein and protein-drug interactions. Unfortunately, many methods used to identify new ligands to desired proteins suffer from common shortcomings, including the requirement that the target protein be purified and/or the requirement that the ligands be selected under conditions different from those under which it will be used. We have developed a new method called the Bead blot that can (i) select ligands to unpurified proteins, including trace proteins, present in complex materials (e.g., unfractionated plasma); (ii) select ligands to multiple proteins under a variety of conditions in a single experiment; and (iii) be used with libraries of different types of ligands. In the Bead blot, a library of ligands, synthesized on chromatography resin beads, is incubated with a starting material containing a target protein for which a ligand is sought. The proteins in the material bind to their complementary ligands according to specific affinity interactions. Then the protein-loaded beads are immobilized in a porous matrix, and the proteins are directionally eluted from the beads and captured on a membrane superimposed on the beads. The location of the target protein on the membrane is determined, and because the position of the protein(s) on the membrane reflects the position of the bead(s) in the matrix, the bead that originally bound the protein is identified, with subsequent elucidation of the ligand sequence. Ligands to several targets can be identified in one experiment. Here we demonstrate the broad utility of this method by the selection of ligands that purify plasma protein complexes or that remove pathogens from whole blood with very high affinity constants. We also select ligands to a protein based on competitive elution.  相似文献   

9.
Affinity chromatography is widely employed in laboratory and large-scale for the purification of biotherapeutics and diagnostics. Some of the most widely used ligands in affinity chromatography have been several reactive chlorotriazine dyes. In particular, immobilized anthraquinone dyes have found a plethora of applications in affinity chromatography because they are inexpensive, are resistant to chemical and biological degradation, are sterilizable and cleanable in situ, and are readily immobilized to generate affinity absorbents which display high binding capacity for a broad spectrum of proteins. This article provides detailed protocols on the preparation of a dye-ligand affinity adsorbent. Also, detailed protocols for effective application of these media, emphasizing binding and elution conditions are presented.  相似文献   

10.
Chromatographic and non‐chromatographic purification of biopharmaceuticals depend on the interactions between protein molecules and a solid–liquid interface. These interactions are dominated by the protein–surface properties, which are a function of protein sequence, structure, and dynamics. In addition, protein–surface properties are critical for in vivo recognition and activation, thus, purification strategies should strive to preserve structural integrity and retain desired pharmacological efficacy. Other factors such as surface diffusion, pore diffusion, and film mass transfer can impact chromatographic separation and resin design. The key factors that impact non‐chromatographic separations (e.g., solubility, ligand affinity, charges and hydrophobic clusters, and molecular dynamics) are readily amenable to computational modeling and can enhance the understanding of protein chromatographic. Previously published studies have used computational methods such as quantitative structure–activity relationship (QSAR) or quantitative structure–property relationship (QSPR) to identify and rank order affinity ligands based on their potential to effectively bind and separate a desired biopharmaceutical from host cell protein (HCP) and other impurities. The challenge in the application of such an approach is to discern key yet subtle differences in ligands and proteins that influence biologics purification. Using a relatively small molecular weight protein (insulin), this research overcame limitations of previous modeling efforts by utilizing atomic level detail for the modeling of protein–ligand interactions, effectively leveraging and extending previous research on drug target discovery. These principles were applied to the purification of different commercially available insulin variants. The ability of these computational models to correlate directionally with empirical observation is demonstrated for several insulin systems over a range of purification challenges including resolution of subtle product variants (amino acid misincorporations). Broader application of this methodology in bioprocess development may enhance and speed the development of a robust purification platform. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:154–164, 2015  相似文献   

11.
A proof-of-principle study was initiated to determine whether phage-display technology could be used to identify peptides as leads in the customization of ligands for affinity chromatography and to identify a peptide or peptidomimetic for use as a Protein A alternative in the affinity purification of monoclonal antibodies. The constant region of humanized anti-Tac (HAT), prepared by pepsin digestion and receptor-affinity chromatography, was used as the target for phage display in this study. As such, 20 phage-derived peptide sequences were identified from four rounds of biopanning with two linear phage-display libraries (7-mer, containing 100 copies of 2 x 10(9) sequences and 12-mer, containing 70 copies of 1.4 x 10(9) sequences). Five peptides were synthesized for use as affinity ligands, based on sequence homology to Protein A, sequence redundancy, and amino acid motifs. The best HAT binding immobilized peptide was EPIHRSTLTALL. The best-fit analysis of this peptide sequence with Protein A yielded an alignment well within the Fc binding domain of Protein A. These results suggest that phage display can serve as a tool in the identification of peptides as model ligands for affinity chromatography.  相似文献   

12.
13.
Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins.  相似文献   

14.
15.
The production of candidate affinity proteins in a soluble form, for downstream characterization, is often a time-consuming step in combinatorial protein engineering methods. Here, a novel approach for efficient production of candidate clones is described based on direct cleavage of the affinity protein from the surface of Staphylococcus carnosus, followed by affinity purification. To find a suitable strategy, three new fusion protein constructs were created, introducing a protease site for specific cleavage and purification tags for affinity chromatography purifications into the staphylococcal display vector. The three modified strains were evaluated in terms of transformation frequency, surface expression level and protease cleavage efficiency. A protocol for efficient affinity purification of protease-released affinity proteins using the introduced fusion-tags was successfully used, and the functionality of protease-treated and purified proteins was verified in a biosensor assay. To evaluate the devised method, a previously selected HER2-specific affibody was produced applying the new principle and was used to analyze HER2 expression on human breast cancer cells.  相似文献   

16.
A novel proteomic approach for probing cell and tissue proteome, which combines liquid phase protein separations with microarray technology has been developed. Proteins in cell and tissue lysates or in cellular subfractions are separated using any one of a number of separation modes which may consist of ion exchange liquid chromatography (LC), reverse phase LC, carrier ampholyte based separations, e.g. the use of Rotofor, affinity based separations, or gel based separations. Each first-dimension fraction obtained using one separation mode can be further resolved using one or more of the other separation modes to yield either purified protein in solution or liquid fractions with substantially reduced protein complexity. The advantage of a liquid based separation system is that proteins in hundreds of individual fractions can be arrayed directly and used as targets for a variety of probes. Constituent proteins in reactive fractions are identified by mass spectrometry and may be further resolved to determine the nature of the reactive protein(s). We present in this report initial data based on microarray analysis of individual Rotofor fractions obtained from lung adenocarcinoma cell line A549 lysates which have been probed with antibodies against specific proteins.  相似文献   

17.
Textile or triazine dyes play an important role as affinity ligands in protein purification. Each step of the protein purification protocol can be divided into three stages, partitioning between two phases, separation of these phases and recovery of the target protein from the enriched phase. Now developments in dye-affinity techniques are discussed emphasizing the innovations in all three stages of the protein purification process. Dye-affinity chromatography has become a routine step in protein purification. New dyes have been developed and used successfully in both traditional chromatographic mode and new modes like affinity precipitation, polymer aqueous two-phase partitioning or expanded bed chromatography. The specificity of dye techniques has been increased by both purposeful designing of new dyes and decreasing non-specific protein–dye interactions with polymer shielding. One can envisage further development and ramification of dye-affinity techniuqes in protein purification.  相似文献   

18.
Specific modified substrate-analogous amino acids and peptides have been used as affinity ligands in the affinity chromatography of proteases. Alanine methyl ketone-Sepharose (AMK-Sepharose) is introduced as affinity support for the purification of a bacterial alanyl aminopeptidase (AAP) from a membrane protein extract and Arginine-Agarose as support for the preparation of a membrane-bound proteinase of myeloma cells (MP-1). Peptidyl methyl ketones as affinity ligands have been used to separate subtilisin enzymes and the cysteine proteases cathepsin B, L, and S. As a new type of ligands, spacer-bound peptidyl chloromethyl ketones are presented for a specific and oriented immobilization of proteinases. Oriented-immobilized cathepsin B was used to isolate antibodies against this enzyme.  相似文献   

19.
Membrane separation and chromatographic technologies are regarded as an attractive alternative to conventional academic small-scale ultracentrifugation procedures used for retrovirus purification. However, despite the increasing demands for purified retroviral vector preparations, new chromatography adsorbents with high specificity for the virus have not been reported. Heparin affinity chromatography is presented here as a novel convenient tool for retrovirus purification. The ability of bioactive retroviral particles to specifically bind to heparin ligands immobilized on a chromatographic gel is shown. A purification factor of 63 with a recovery of 61% of functional retroparticles was achieved using this single step. Tentacle heparin affinity supports captured retroviral particles more efficiently than conventional heparin affinity chromatography supports with which a lower recovery was obtained (18%). Intact, infective retroviral particles were recovered by elution with low salt concentrations (350 mM NaCl). Mild conditions for retrovirus elution from chromatographic columns are required to preserve virus infectivity. VSV-G pseudotyped retroviruses have shown to be very sensitive to high ionic strength, losing 50% of their activity and showing membrane damage after a short exposure to 1M NaCl. We also report a complete scaleable downstream processing scheme for the purification of MoMLV-derived vectors that involves sequential microfiltration and ultra/diafiltration steps for virus clarification and concentration respectively, followed by fractionation by heparin affinity chromatography and final polishing by size-exclusion chromatography. Overall, by using this strategy, a 38% yield of infective particles can be achieved with a final purification factor of 2,000.  相似文献   

20.
A protocol for the purification of polyclonal antibodies from ovine serum using the synthetic protein A absorbent MAbsorbent A2P is described. Clarified serum is loaded directly onto the affinity column without prior adjustment and albumin and unwanted serum components are washed from the column using a sodium octanoate buffer before elution of bound antibodies. MAbsorbent A2P was shown to bind approximately 27 mg ml(-1) of polyclonal immunoglobulin under overloading conditions, with eluted IgG purities of >90% and minor levels of albumin (approximately 1%). The anticipated time required to complete the purification protocol is 6-7 h. Although the protocol is similar to methods utilized for antibody purification using chromatography with protein A derived from the cell wall of the microorganism Staphylococcus aureus or protein G from Streptococcus as the affinity ligands, affinity absorbents based on synthetic ligands offer a number of advantages to compounds derived from biological sources, in particular robustness, relatively low cost, ease of sanitization and, in principle, lack of biological contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号