首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core.  相似文献   

2.
Neale PJ  Melis A 《Plant physiology》1990,92(4):1196-1204
The effect of strong irradiance (2000 micromole photons per square meter per second) on PSII heterogeneity in intact cells of Chlamydomonas reinhardtii was investigated. Low light (LL, 15 micromole photons per square meter per second) grown C. reinhardtii are photoinhibited upon exposure to strong irradiance, and the loss of photosynthetic functioning is due to damage to PSII. Under physiological growth conditions, PSII is distributed into two pools. The large antenna size (PSIIα) centers account for about 70% of all PSII in the thylakoid membrane and are responsible for plastoquinone reduction (Qb-reducing centers). The smaller antenna (PSIIβ) account for the remainder of PSII and exist in a state not yet able to photoreduce plastoquinone (Qb-nonreducing centers). The exposure of C. reinhardtii cells to 60 minutes of strong irradiance disabled about half of the primary charge separation between P680 and pheophytin. The PSIIβ content remained the same or slightly increased during strong-irradiance treatment, whereas the photochemical activity of PSIIα decreased by 80%. Analysis of fluorescence induction transients displayed by intact cells indicated that strong irradiance led to a conversion of PSIIβ from a Qb-nonreducing to a Qb-reducing state. Parallel measurements of the rate of oxygen evolution revealed that photosynthetic electron transport was maintained at high rates, despite the loss of activity by a majority of PSIIα. The results suggest that PSIIβ in C. reinhardtii may serve as a reserve pool of PSII that augments photosynthetic electron-transport rates during exposure to strong irradiance and partially compensates for the adverse effect of photoinhibition on PSIIα.  相似文献   

3.
Oxygen electrode and fluorescence studies demonstrate that linear electron transport in the freshwater alga Chlamydomonas reinhardtii can be completely abolished by abrupt hyperosmotic shock. We show that the most likely primary site of inhibition of electron transfer by hyperosmotic shock is a blockage of electron transfer between plastocyanin (PC) or cytochrome c(6) and P(700). The effects on this reaction were reversible upon dilution of the osmolytes and the stability of plastocyanin or photosystem (PS) I was unaffected. Electron micrographs of osmotically shocked cells showed a significant decrease in the thylakoid lumen volume. Comparison of estimated lumenal width with the x-ray structures of plastocyanin and PS I suggest that lumenal space contracts during HOS so as to hinder the movement of docking to PS I of plastocyanin or cytochrome c(6).  相似文献   

4.
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.Oxygenic photosynthesis is essential for almost all life on Earth, as it provides the reduced carbon and the oxygen required for respiration. A key enzyme in oxygenic photosynthesis is PSII, which catalyzes the light-driven oxidation of water. The core of PSII in algae and land plants contains D1 (PsbA), D2 (PsbD), CP43 (PsbC), CP47 (PsbB), the α-subunit (PsbE) and β-subunit (PsbF) of cytochrome b559, as well as several intrinsic low-molecular-mass subunits. The core monomer is associated with the extrinsic oxygen-evolving complex (OEC) consisting of OEE1 (PSBO), OEE2 (PSBP), and OEE3 (PSBQ), which stabilize the inorganic Mn4O5Ca cluster required for water oxidation (for review, see Pagliano et al., 2013). PSII core monomers assemble into dimers to which, at both sides, light-harvesting proteins (LHCII) bind to form PSII supercomplexes. In land plants, each PSII dimer binds two each of the monomeric minor LHCII proteins CP24, CP26, and CP29 in addition to up to four major LHCII trimers (Caffarri et al., 2009; Kouřil et al., 2011). Biochemical evidence suggests that, in the thylakoid membrane, up to eight LHCII trimers can be present per PSII core dimer, presumably because of the existence of a pool of extra LHCII (Kouřil et al., 2013). In Chlamydomonas reinhardtii, lacking CP24, each PSII dimer binds two each of the CP26 and CP29 monomers as well as up to six major LHCII trimers (Tokutsu et al., 2012). The reaction center proteins D1 and D2 bind all the redox-active cofactors required for PSII electron transport (Umena et al., 2011). Light captured by the internal antenna proteins CP43 and CP47 and the outer antenna induces charge separation in PSII, which in turn enables the OEC to oxidize water and provide electrons to the electron transfer chain. In land plants and green algae, PSII supercomplexes are localized to stacked regions of the thylakoid membranes, while the synthesis of PSII cores is considered to take place in stroma lamellae.A particular feature of PSII is its vulnerability to light, with the D1 protein being a target of light-induced damage and the damage being proportional to the photon flux density (PFD) applied (Tyystjärvi and Aro, 1996). To cope with this damage, an elaborate, highly conserved repair mechanism has evolved termed the PSII repair cycle, during which damaged PSII complexes are partially disassembled and the defective D1 protein is replaced by a de novo synthesized copy (for review, see Nixon et al., 2010; Komenda et al., 2012; Mulo et al., 2012; Nath et al., 2013a; Nickelsen and Rengstl, 2013; Tyystjärvi, 2013; Järvi et al., 2015). Photodamage occurs at all light intensities, but when the rate of damage exceeds the capacity for repair, photoinhibition is manifested as a decrease in the proportion of active PSII reaction centers (Aro et al., 1993). While PSII photodamage occurs in the supercomplexes in the stacked membrane regions, the replacement of damaged D1 takes place in stroma lamellae (Aro et al., 2005). Thus, the PSII repair cycle requires the lateral migration of PSII complexes, which is impaired by the macromolecular crowding in stacked thylakoid membranes (Kirchhoff, 2014). Lateral migration of damaged PSII complexes is facilitated by thylakoid membrane unfolding and PSII supercomplex disassembly. Both processes are enhanced by the phosphorylation of the PSII core subunits D1, D2, CP43, and PsbH, which is mainly mediated by the protein kinase STATE TRANSITION8 (STN8; Tikkanen et al., 2008; Fristedt et al., 2009; Herbstová et al., 2012; Nath et al., 2013b; Wunder et al., 2013). Efficient PSII supercomplex disassembly also requires the THYLAKOID FORMATION1 (THF1)/NON-YELLOW COLORING4 (NYC4)/Psb29 protein (Huang et al., 2013; Yamatani et al., 2013). After the migration of PSII monomers to unstacked thylakoid regions, PSII core subunits are dephosphorylated by the PSII core phosphatase PBCP (Samol et al., 2012), which is required for the efficient degradation of D1 (Koivuniemi et al., 1995; Rintamäki et al., 1996; Kato and Sakamoto, 2014). Degradation of D1 is subsequently realized by the membrane-integral FtsH protease (Lindahl et al., 2000; Silva et al., 2003) and by lumenal and stromal Deg proteases (Haussühl et al., 2001; Kapri-Pardes et al., 2007; Sun et al., 2010). Degradation is assisted by the THYLAKOID LUMEN PROTEIN18.3 (TLP18.3), presumably by its phosphatase activity and ability to interact with lumenal Deg1 (Sirpiö et al., 2007; Wu et al., 2011; Zienkiewicz et al., 2012). D1 proteolysis follows the partial disassembly of the PSII complex, during which CP43 and low-molecular-mass subunits are released to generate a CP43-free PSII monomer (Aro et al., 2005). Thereafter, a newly synthesized D1 copy is cotranslationally inserted from a plastidial 70S ribosome into the thylakoid membrane and processed by the CARBOXYL TERMINAL PEPTIDASE A (CTPA; Zhang et al., 1999, 2000; Che et al., 2013). In Arabidopsis (Arabidopsis thaliana), the D1 synthesis rate appears to be negatively regulated by the PROTEIN DISULFIDE ISOMERASE6 (PDI6; Wittenberg et al., 2014). Moreover, yet unknown steps during PSII repair require the stromal cyclophilin ROTAMASE CYP4 and stromal HEAT SHOCK PROTEIN70 (Schroda et al., 1999; Yokthongwattana et al., 2001; Cai et al., 2008). The PSII repair cycle is completed by the reassembly of the CP43 protein, ligation of the OEC, back migration of PSII to stacked membrane regions, and supercomplex formation. Except for CtpA, all mentioned factors appear to be specific for PSII repair, while many more auxiliary factors play roles in PSII de novo synthesis and repair (for review, see Järvi et al., 2015).In this study, we report on the functional characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in C. reinhardtii. In this organism, TEF30 was first identified in a proteomics study on isolated thylakoid membranes (Allmer et al., 2006). TEF30 attracted our attention because its abundance increased 1.7-fold in membrane-enriched fractions of C. reinhardtii cells that had been shifted from 41 to 145 µmol photons m−2 s−1 for 8 h (Mettler et al., 2014; Supplemental Fig. S1). The TEF30 ortholog in Arabidopsis M-ENRICHED THYLAKOID PROTEIN1 (MET1; where M stands for mesophyll cells) was functionally characterized only recently (Bhuiyan et al., 2015). Both MET1 and TEF30 interact quantitatively with monomeric PSII core particles at the stroma side of the thylakoid membranes and play a role in the assembly of PSII monomers and/or their migration to stacked membrane regions for supercomplex assembly. While MET1 appears to exert this function during PSII de novo biogenesis and during the PSII repair cycle in Arabidopsis, TEF30 appears to function exclusively during PSII repair in C. reinhardtii.  相似文献   

5.
FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.  相似文献   

6.
The analysis of FDMR spectra, recorded at multiple emission wavelengths, by a global decomposition technique, has allowed us to characterise the triplet populations associated with Photosystem I and Photosystem II of thylakoids in the green alga Chlamydomonas reinhardtii. Three triplet populations are observed at fluorescence emissions characteristic of Photosystem II, and their zero field splitting parameters have been determined. These are similar to the zero field parameters for the three Photosystem II triplets previously reported for spinach thylakoids, suggesting that they have a widespread occurrence in nature. None of these triplets have the zero field splitting parameters characteristic of the Photosystem II recombination triplet observed only under reducing conditions. Because these triplets are generated under non-reducing redox conditions, when the recombination triplet is undetectable, it is suggested that they may be involved in the photoinhibition of Photosystem II. At emission wavelengths characteristic of Photosystem I, three triplet populations are observed, two of which are attributed to the P(700) recombination triplet frozen in two different conformations, based on the microwave-induced fluorescence emission spectra and the triplet minus singlet difference spectra. The third triplet population detected at Photosystem I emission wavelengths, which was previously unresolved, is proposed to originate from the antenna chlorophyll of the core or the unusually blue-shifted outer antenna complexes of this organism.  相似文献   

7.
In this Minireview, a comparison of the binding niches of the PS II cofactors from several existing models of the PS II reaction center is provided. In particular, it discusses a three dimensional model of the Photosystem II (PS II) reaction center including D1, D2 and cytochrome b559 proteins from the green alga Chlamydomonas reinhardtii that was specifically generated for this Minireview. This model is the most complete to date and includes accessory chlorophyllzs, a manganese cluster, two molecules of -carotene and cytochrome b559, all of which are essential components of the PS II reaction center. The modeling of the D1 and D2 proteins was primarily based on homology with the L and M subunits of the anoxygenic purple bacterial photosynthetic reaction centers. The non-homologous loop regions were built using a sequence specific approach by searching for the best-matched protein segments in the Protein Data Bank, and by imposing the matching conformations on the corresponding D1 and D2 regions. Cytochrome b559 which is in close proximity to D1 and D2 was tentatively modeled in / conformation and docked on the QB side of the PS II reaction center according to experimental suggestions. An alternate docking on the QA side is also shown for comparison. The cofactors in the PS II reaction center were modeled either by adopting the structures from the bacterial counterparts, when available, with modifications based on existing experimental data or by de novo modeling and docking in the most probable positions in the reaction center complex. The specific features of this model are the inclusion of the tetramanganese cluster (with calcium and chloride ions) in a open, C-shaped structure modeled within the D1/D2/cytochrome b559 complex with D1-D170, D1-E189, D1-D342 and D1-A344 as putative ligands; and the modeling of two cis -carotenes and two accessory chlorophyllzs liganded by D1-H118 and D2-H117. We also analyzed residues in the model which may be involved in the D1 and D2 inter-protein interactions, as well as residues which may be involved in putative bicarbonate and water binding and transport.  相似文献   

8.
Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.  相似文献   

9.
We have developed a rapid method for isolation of the Photosystem I (PS1) complex from Chlamydomonas reinhardtii using epitope tagging. Six histidine residues were genetically added to the N-terminus of the PsaA core subunit of PS1. The His6-tagged PS1 could be purified with a yield of 80–90% from detergent-solubilized thylakoid membranes within 3 h in a single step using a Ni-nitrilotriacetic acid (Ni-NTA) column. Immunoblots and low-temperature fluorescence analysis indicated that the His6-tagged PS1 preparation was highly pure and extremely low in uncoupled pigments. Moreover, the introduced tag appeared to have no adverse effect upon PS1 structure/function, as judged by photochemical assays and EPR spectroscopy of isolated particles, as well as photosynthetic growth tests of the tagged strain. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
We describe a genetically engineered strain of Chlamydomonas reinhardtii where the PsbH subunit of Photosystem II (PSII) has been modified to include a C-terminal polyhistidine tag. The strain was generated by the rescue to photoautotrophic growth of a psbH insertional mutant following chloroplast transformation with the modified gene. This selection strategy confirms that the addition of the tag to PsbH does not prevent the assembly of functional PSII, and results in an engineered strain with tagged PSII but no antibiotic-resistance markers in the chloroplast genome. Consequently, the strain is suitable for subsequent genetic manipulation of chloroplast PSII genes. We also describe a rapid PSII isolation procedure that gives a preparation capable of high rates of oxygen evolution. This preparation is suitable for spectroscopic analysis as shown by EPR analysis of the S2 state of the water oxidation cycle. Furthermore, electron microscopy, coupled to single particle analysis, has revealed the isolated PSII to be structurally homogeneous core dimers that are ideally suited for higher resolution structural studies.  相似文献   

11.
In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins, CP43 and CP47. To gain insight into the function(s) of each of the peripheral Chls, we generated site-specific mutations of the amino acid residues that coordinate these Chls and characterized their energy and electron transfer properties. Our results demonstrate that D1-H118 and D2-H117 mutants differ with respect to: (a) their relative numbers of functional PSII complexes, (b) their relative ability to stabilize charge-separated states, (c) light-harvesting efficiency, and (d) their sensitivity to photo-inhibition. The D2-H117N and D2-H117Q mutants had reduced levels of functional PSII complexes and oxygen evolution capacity as well as reduced light-harvesting efficiencies relative to wild-type cells. In contrast, the D1-H118Q mutant was capable of near wild-type rates of oxygen evolution at saturating light intensities. The D1-H118Q mutant also was substantially more resistant to photo-inhibition than wild type. This reduced sensitivity to photo-inhibition is presumably associated with a reduced light-harvesting efficiency in this mutant. Finally, it is noted that the PSII peripheral accessory Chls have similarities to a to a pair of Chls also present in the PSI reaction center complex.  相似文献   

12.
13.
Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment-binding proteins called light harvesting complexes constituting the external antenna system in the photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: Excitation energy transfer from external antenna to reaction centre was reduced, and state transitions were completely impaired. Moreover, differently from higher plants, photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by nonphotochemical quenching.  相似文献   

14.
Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes.  相似文献   

15.
Responses of photosystem I and II activities of Microcystis aeruginosa to various concentrations of Cu2+ were simultaneously examined using a Dual-PAM-100 fluorometer. Cell growth and contents of chlorophyll a were significantly inhibited by Cu2+. Photosystem II activity [Y(II)] and electron transport [rETRmax(II)] were significantly altered by Cu2+. The quantum yield of photosystem II [Y(II)] decreased by 29 % at 100 μg L?1 Cu2+ compared to control. On the contrary, photosystem I was stable under Cu2+ stress and showed an obvious increase of quantum yield [Y(I)] and electron transport [rETRmax(I)] due to activation of cyclic electron flow (CEF). Yield of cyclic electron flow [Y(CEF)] was enhanced by 17 % at 100 μg L?1 Cu2+ compared to control. The contribution of linear electron flow to photosystem I [Y(II)/Y(I)] decreased with increasing Cu2+ concentration. Yield of cyclic electron flow [Y(CEF)] was negatively correlated with the maximal photosystem II photochemical efficiency (F v/F m). In summary, photosystem II was the major target sites of toxicity of Cu2+, while photosystem I activity was enhanced under Cu2+ stress.  相似文献   

16.
The work outlines the isolation of transformant Chlamydomonas reinhardtii cells that appear to be unable to repair Photosystem II from photoinhibitory damage. A physiological and biochemical characterization of three mutants is presented. The results show differential stability for the D1 reaction center protein in the three mutants compared to the wild type and suggest lesions that affect different aspects of the Photosystem II repair mechanism. In the ag16.2 mutant, significantly greater amounts of D1 accumulate in the thylakoid membrane than in the wild type under steady-state growth conditions, and D1 loss is significantly retarded in the presence of the protein biosynthesis inhibitor chloramphenicol. Moreover, aberrant electrophoretic mobility of D1 in the ag16.2 suggests that this protein is modified to an as yet unknown configuration. These results indicate that the biosynthesis and/or degradation of D1 is altered in this strain. A different type of mutation occurred in the kn66.7 and kn27.4 mutants of C. reinhardtii. The stability of D1 declined much faster as a function of light intensity in these mutants than in the wild type. Thereby, the threshold of photoinhibition in these mutants was significantly lower than that in the wild type. It appears that kn66.7 and kn27.4 are similar conditional mutants, with the only difference between them being the amplitude of the chloroplast response to the mutation and the differential sensitivity they display to the level of irradiance.  相似文献   

17.
The D1 protein (D1) of photosystem II (PSII) reaction centeris synthesized as a precursor (pD1) and then processed at itscarboxyl terminus to establish the function of water cleavage.The amino acid sequence of the carboxyl terminal extension excisedby this process is poorly conserved except for a residue afterthe cleavage site at position of 345. We have constructed avector for site-directed mutagenesis of the chloroplast psbAgene encoding D1 of the green alga, Chlamydomonas reinhardtii.The vector enables one to transform the chloroplasts of a psbAdeletion mutant (Fud7) and directly select transformants forresistance to spectinomycin. Using this transforming vector,we have substituted Ser345 to Gly, Cys, Val and Phe in orderto investigate effects of the amino acid side chain at thisposition on the processing rate. All of the resulting transformantsexhibited the PSII activity as wild type and grew normally underphotoautotrophic conditions even under strong light where rapidturnover of Dl protein is expected to occur. Western blottinganalysis demonstrated that mature D1 accumulates in these transformantsat wild type level. Pulse and chase labeling of chloroplast-encodedproteins using [35S]sulfate revealed that the processing ofD1 precursor protein occurs in all four transformants as efficientlyas in wild type, at least under the experimental conditionsexamined. The results suggest that either the amino acid sidechain at position of 345 (+1 position) is not crucial to theenzymatic cleavage of pD1 in vivo or the apparent rate of processingin vivo is not limited by the enzymatic cleavage. (Received September 22, 1995; Accepted December 25, 1995)  相似文献   

18.
A novel supercomplex of Photosystem I (PSI) with light harvesting complex I (LHCI) was isolated from the green alga Chlamydomonas reinhardtii. This novel supercomplex is unique as it is the first stable supercomplex of PSI together with its external antenna. The supercomplex contains 256 chlorophylls per reaction center. The supercomplex was isolated under anaerobic conditions and may represent the State II form of the photosynthetic unit. In contrast to previously reported supercomplexes isolated in State I, which contain only 4 LHC I proteins, this supercomplex contains 10-11 LHC I proteins tightly bound to the PSI core. In contrast to plants, no LHC II is tightly bound to the PSI-LHCI supercomplex in State II. Investigation of the energy transfer from the antenna system to the reaction center core shows that the LHC supercomplexes are tightly coupled to the PSI core, not only structurally but also energetically. The excitation energy transfer kinetics are completely dominated by the fast phase, with a near-complete lack of long-lived fluorescence. This tight coupling is in contrast to all reports of energy transfer in PSI-LHCI supercomplexes (in State I), which have so far been described as weakly coupled supercomplexes with low efficiency for excitation energy transfer. These results indicate that there are large and dynamic changes of the PSI-LHCI supercomplex during the acclimation from aerobic (State I) to anaerobic (State II) conditions in Chlamydomonas.  相似文献   

19.
We measured picosecond time-resolved fluorescence of intact Photosystem I complexes from Chlamydomonas reinhardtii and Arabidopsis thaliana. The antenna system of C. reinhardtii contains about 30-60 chlorophylls more than that of A. thaliana, but lacks the so-called red chlorophylls, chlorophylls that absorb at longer wavelength than the primary electron donor. In C. reinhardtii, the main lifetimes of excitation trapping are about 27 and 68 ps. The overall lifetime of C. reinhardtii is considerably shorter than in A. thaliana. We conclude that the amount and energies of the red chlorophylls have a larger effect on excitation trapping time in Photosystem I than the antenna size.  相似文献   

20.
Cr6+胁迫对莱茵衣藻光合作用的影响   总被引:2,自引:0,他引:2  
以莱茵衣藻(Chlamydomonas reinhardtii)为研究材料,采用氧电极和快速叶绿素a荧光诱导动力学方法研究了不同浓度和时间Cr6+处理对其光合作用的影响.结果表明:当Cr6+浓度大于40 μmol/L时,莱茵衣藻细胞数逐渐下降,而藻细胞变大;表观光合速率成为负值,呼吸作用随Cr6+处理浓度的增加先上升后下降至对照水平;莱茵衣藻有活性放氧复合体比例随Cr6+处理浓度的增加逐渐降低,80 μmol/L Cr6+处理3 d时已下降至13.72%;光合驱动力(DFABS)随Cr6+浓度增加逐步下降,并以DFφPo在DFABS的下降中的贡献最大.研究发现,重金属Cr6+胁迫显著影响莱茵衣藻的光合作用,而对呼吸作用则影响较小;Cr6+主要通过损伤供体侧的放氧复合体以及阻断QA至QB的电子传递而抑制光系统Ⅱ的功能;莱茵衣藻光系统Ⅱ对Cr6+处理比较敏感且存在着多个作用位点,并首先影响反应中心光能捕获效率,其次影响反应中心的活性,最后影响QA-之后的电子传递.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号