首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which the contractile machinery of muscle is assembled and maintained is not well-understood. Members of the cysteine-rich protein (CRP) family have been implicated in these processes. Three vertebrate CRPs (CRP1-3) that exhibit developmentally regulated muscle-specific expression have been identified. All three proteins are associated with the actin cytoskeleton, and one has been shown to be required for striated muscle structure and function. The vertebrate CRPs identified to date display a similar molecular architecture; each protein is comprised of two tandemly arrayed LIM domains, protein-binding motifs found in a number of proteins with roles in cell differentiation. Each LIM domain coordinates two Zn(II) ions that are bound independently in CCHC (C=Cys, H=His) and CCCC modules. Here we describe the solution structure of chicken CRP1 determined by homonuclear and 1H-15N heteronuclear magnetic resonance spectroscopy. Comparison of the structures of the two LIM domains of CRP1 reveals a high degree of similarity in their tertiary folds. In addition, the two component LIM domains represent two completely independent folding units and exhibit no apparent interactions with each other. The structural independence and spatial separation of the two LIM domains of CRP1 are compatible with an adapter or linker role for the protein.  相似文献   

2.
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.  相似文献   

3.
Li A  Ponten F  dos Remedios CG 《Proteomics》2012,12(2):203-225
LIM domain proteins all contain at least one double zinc-finger motif. They belong to a large family and here we review those expressed mainly in mammalian hearts, but particularly in cardiomyocytes. These proteins contain between one and five LIM domains and usually these proteins contain other domains that have specific functions such as actin-binding, kinases and nuclear translocation motifs. While several recent reviews have summarised the importance of individual LIM domain proteins, this is the first review of its kind to cover all LIMs associated with the heart. Here we examine 33 LIM proteins (including three that bind to, but do not themselves contain, LIM domains) that are implicated in either the development of the heart, heart disorders and failure, or both. Our analysis is consistent with the view that cardiac LIM domain proteins form multiple extensive networks of multi-protein complexes within the myocardium. This multiplicity of binding partners probably protects the heart as it is challenged to maintain cardiac output, until the imbalance reaches a turning point that results in failure. We believe that the complexity of LIM interactions is properly described by the term LIM interactome.  相似文献   

4.
LIM proteins: association with the actin cytoskeleton   总被引:1,自引:0,他引:1  
The LIM domain is an evolutionary conserved double-zinc finger motif found in a variety of proteins exhibiting diverse biological roles. LIM domains have been observed to act as modular protein-binding interfaces mediating protein-protein interactions in the cytoplasm and the nucleus. Interaction of LIM domains with specific protein partners is now known to influence its subcellular localization and activity; however, no single binding motif has been identified as a common target for LIM domains. Several LIM domain-containing proteins associated with the actin cytoskeleton have been identified, playing a role in signal transduction and organization of the actin filaments during various cellular processes.  相似文献   

5.
Zyxin is an adhesion protein that regulates actin assembly by binding to VASP family members through N-terminal proline-rich motifs. Evidence suggests that zyxin’s C-terminal LIM domains function as a negative regulator of zyxin-VASP complexes. Zyxin LIM domains access to binding partners is negatively regulated by an unknown mechanism. One possibility is that zyxin LIM domains mediate a head-tail interaction, blocking interactions with other proteins. Such a mechanism might prevent both zyxin-VASP complexes activity and LIM domain access. In this report, the effect of LIM domains on zyxin-VASP complex assembly is defined. We find that zyxin LIM domains associate with zyxin’s VASP binding sites, preventing zyxin from binding to PKA-phosphorylated VASP. Unphosphorylated VASP overcomes the head-tail interaction, a result of a direct interaction with the LIM domain region. Zyxin, like a growing number of actin regulators, is controlled by intramolecular interactions.  相似文献   

6.
7.
Diseases caused by many Gram-negative bacterial pathogens depend on the activities of bacterial effector proteins that are delivered into eukaryotic cells via specialized secretion systems. Effector protein function largely depends on specific subcellular targeting and specific interactions with cellular ligands. PDZ domains are common domains that serve to provide specificity in protein-protein interactions in eukaryotic systems. We show that putative PDZ-binding motifs are significantly enriched among effector proteins delivered into mammalian cells by certain bacterial pathogens. We use PDZ domain microarrays to identify candidate interaction partners of the Shigella flexneri effector proteins OspE1 and OspE2, which contain putative PDZ-binding motifs. We demonstrate in vitro and in cells that OspE proteins interact with PDLIM7, a member of the PDLIM family of proteins, which contain a PDZ domain and one or more LIM domains, protein interaction domains that participate in a wide variety of functions, including activation of isoforms of protein kinase C (PKC). We demonstrate that activation of PKC during S. flexneri infection is attenuated in the absence of PDLIM7 or OspE proteins and that the OspE PDZ-binding motif is required for wild-type levels of PKC activation. These results are consistent with a model in which binding of OspE to PDLIM7 during infection regulates the activity of PKC isoforms that bind to the PDLIM7 LIM domain.  相似文献   

8.
Containing four LIM domains and an N-terminal half LIM domain, FHL2 has been predicted to have an adaptor function in the formation of higher order molecular complexes in the nucleus and the cytoplasm of cells. We expressed recombinant FHL2 in insect cells using the baculovirus system and used it to isolate direct or indirect interaction partners from the cytosolic fraction of fibroblasts by affinity chromatography. These were identified by their peptide mass fingerprints using MALDI-TOF mass spectrometry. Cytoskeleton-associated proteins present among the bound proteins were shown to co-localise with FHL2 in cell lamellipodia by indirect immunofluorescence staining.  相似文献   

9.
10.
11.
The Hic-5 protein is encoded by a transforming growth factor-beta1- and hydrogen peroxide-inducible gene, hic-5, and has striking similarity to paxillin, especially in their C-terminal LIM domains. Like paxillin, Hic-5 is localized in focal adhesion plaques in association with focal adhesion kinase in cultured fibroblasts. We carried out yeast two-hybrid screening to identify cellular factors that form a complex with Hic-5 using its LIM domains as a bait, and we identified a cytoplasmic tyrosine phosphatase (PTP-PEST) as one of the partners of Hic-5. These two proteins are associated in mammalian cells. From in vitro binding experiments using deletion and point mutations, it was demonstrated that the essential domain in Hic-5 for the binding was LIM 3. As for PTP-PEST, one of the five proline-rich sequences found on PTP-PEST, Pro-2, was identified as the binding site for Hic-5 in in vitro binding assays. Paxillin also binds to the Pro-2 domain of PTP-PEST. In conclusion, Hic-5 may participate in the regulation of signaling cascade through its interaction with distinct tyrosine kinases and phosphatases.  相似文献   

12.
13.
The LIM domain is defined as a protein-protein interaction module involved in the regulation of diverse cellular processes including gene expression and cytoskeleton organization. We have recently shown that the tobacco WLIM1, a two LIM domain-containing protein, is able to bind to, stabilize and bundle actin filaments, suggesting that it participates to the regulation of actin cytoskeleton structure and dynamics. In the December issue of the Journal of Biological Chemistry we report a domain analysis that specifically ascribes the actin-related activities of WLIM1 to its two LIM domains. Results suggest that LIM domains function synergistically in the full-length protein to achieve optimal activities. Here we briefly summarize relevant data regarding the actin-related properties/functions of two LIM domain-containing proteins in plants and animals. In addition, we provide further evidence of cooperative effects between LIM domains by transiently expressing a chimeric multicopy WLIM1 protein in BY2 cells.Key words: Actin-binding proteins, actin-bundling, cysteine-rich proteins, cytoskeleton, LIM domainThe LIM domain is a ≈55 amino acid peptide domain that was first identified in 1990 as a common cystein-rich sequence found in the three homeodomain proteins LIN-11, Isl1 and MEC-3. It has since been found in a wide variety of eukaryotic proteins of diverse functions. Animals possess several families of LIM proteins, with members containing 1–5 LIM domains occasionally linked to other catalytic or protein-binding domains such as homeodomain, kinase and SH3 domains. In contrast, plants only possess two distinct sets of LIM proteins. One is plant-specific and has not been functionally characterized yet. The other one comprises proteins that exhibit the same overall structure as the animal cystein rich proteins (CRPs), i.e., two very similar LIM domains separated by a ≈50 amino acid-long interLIM domain and a relatively short and variable C-terminal domain (Fig. 1A). The mouse CRP2 protein was the first CRP reported to interact directly with actin filaments (AF) and to stabilize the latter.1 Identical observations were subsequently described for the chicken CRP1 and tobacco WLIM1 proteins.2,3 In addition, these two proteins were shown to arrange AF into cables both in vitro and in vivo and thus join the list of actin bundlers.Open in a separate windowFigure 1Domain maps for wild-type WLIM1 (A) and GFP-fused chimeric 3xWLIM1 (B). A. WLIM1 basically comprises a short N-terminal domain (Nt), two LIM domains (LIM1 and LIM2), an interLIM spacer (IL) and a C-terminal domain (Ct). B. 3xWLIM1 consists of three tandem WLIM1 copies. This chimeric protein has been fused in C-terminus to GFP and transiently expressed in tobacco BY2 cells.To identify the peptide domains of WLIM1 responsible for its actin-related properties/activities, we generated domain-deleted and single domain variants and submitted them to a series of in vivo and in vitro assays.4 Localization experiments established that both LIM domains are required to efficiently target the actin cytoskeleton in tobacco BY2 cells. High-speed (200,000 g) cosedimentation data confirmed that the actin-binding activity of WLIM1 relies on its LIM domains. Indeed, the deletion of either the first or the second LIM domain respectively resulted in a 5-fold and 10-fold decrease of the protein affinity for AF. Importantly, each single LIM domain was found able to interact with AF in an autonomous manner, although with a reduced affinity compared to the wild-type WLIM1. Low-speed (12,500 g) cosedimentation data and electron microscopy observations revealed that the actin bundling activity of WLIM1 is also triggered by its LIM domains. Surprisingly each single LIM domain was able to bundle AF in an autonomous manner, suggesting that WLIM1 has two discrete actin-bundling sites. However, the bundles induced by the variants containing only one LIM domain, i.e., LIM domain-deleted mutants and single LIM domains, differed from those induced by the full-length WLIM1. They appeared more wavy and loosely packed and formed only at relatively high protein:actin ratios. Together these data suggest that LIM domains are autonomous actin-binding and -bundling modules that function in synergy in wild-type WLIM1 to achieve optimal activities.To further assess the mechanism of cooperation between the LIM domains of plant CRP-related proteins, we generated a chimeric protein composed of three WLIM1 copies in tandem (3 × WLIM1, Fig. 1B), and transiently expressed it as a GFP-fusion in tobacco BY2 cells. We anticipated that such a six LIM domain-containing protein displays an even higher actin-bundling activity. (Fig. 2A) shows the typical actin cytoskeleton pattern in an expanding BY2 cell as visualized using the actin marker GFP-fABD2.5 As previously reported by Sheahan et al.,5 GFP-fABD2 decorated dense, transversely oriented, cortical networks as well as transvacuolar strands connecting the subcortical-perinuclear region to the cortex. Ectopic expression of WLIM1-GFP (BY2 cells normally do not express the WLIM1 gene) induced moderate but perceptible modifications of the actin cytoskeleton structure (Fig. 2B). Most AF are arranged in bundles thicker than those observed in GFP-fABD2 expressing cells and fine AF arrays are less frequently observed. As expected, this phenotype was significantly enhanced in cells transformed with the 3xWLIM1-GFP protein (Fig. 2C). Indeed, cells were almost devoided of fine AF arrays and exhibited very thick actin cables (Fig. 2C) that, at times (≈30 %), form atypical long looped structures (Fig. 2D). The appearance of such structures may result from the increase of cable stability and thickness induced by the 3xWLIM1-GFP protein, as these parameters are likely to determine, at least partially, the maximal length of actin bundles. Together the present observations support earlier data showing that LIM domains work in concert in LIM proteins to regulate actin bundling in plant cells. Strikingly, vertebrate and plant CRPs invariably contain two LIM domains. The lack, in these organisms, of CRP-related proteins combining more than two LIM domains may be explained by the fact that very thick cables, such as those induced by the artificial 3xWLIM1, may be too stable structures incompatible with the necessary high degree of actin cytoskeleton plasticity. As an exception, a muscle CRP-related protein with five LIM domains (Mlp84B) has been identified in Drosophila.6 However, rather than decorating actin filaments in an homogenous manner, this protein has been found to concentrate in a specialized region of the Z-discs where it stabilizes, in concert with D-titin, muscle sarcomeres.7Open in a separate windowFigure 2Typical actin cytoskeleton patterns in tobacco BY2 cells that have been transiently transformed, using a particle gun, with GFP-fABD2 (A), WLIM1-GFP (B), and 3xWLIM1-GFP (C and D). For each construct, more than 60 cells were analyzed by confocal microscopy. In the case of 3xWLIM1-GFP, two prevalent patterns have been observed (C and D). Bars = 20 µm.The relatively well conserved spacer length (≈50 amino acids) that separates the two LIM domains in vertebrate CRPs and related plant LIM proteins remains an intriguing feature the importance of which in actin cable organization remains to be established. Using electron microscopy we are currently evaluating the effects of the modification of the interLIM domain length on the structural properties of actin cables.  相似文献   

14.
Tandem beta zippers are modular complexes formed between repeated linear motifs and tandemly arrayed domains of partner proteins in which β-strands form upon binding. Studies of such complexes, formed by LIM domain proteins and linear motifs in their intrinsically disordered partners, revealed spacer regions between the linear motifs that are relatively flexible but may affect the overall orientation of the binding modules. We demonstrate that mutation of a solvent exposed side chain in the spacer region of an LHX4–ISL2 complex has no significant effect on the structure of the complex, but decreases binding affinity, apparently by increasing flexibility of the linker.  相似文献   

15.
Hydrogen peroxide-inducible clone-5 (Hic-5), belongs to the group III LIM domain protein family and contains four carboxyl-terminal LIM domains (LIM1-LIM4). In addition to its role in focal adhesion signaling, Hic-5 acts in the nucleus as a coactivator for some steroid hormone receptors such as the glucocorticoid receptor (GR) and androgen receptor (AR). Based upon its effect on AR transactivation, Hic-5 has also been designated as ARA55. Here, we report mapping studies of Hic-5/ARA55 functional domains and establish that LIM3 and LIM4 are necessary for maximal effects on GR transactivation. However, results from yeast two-hybrid assays demonstrated that these two LIM domains together, while necessary, are not sufficient to interact with the tau2 transactivation domain of GR. LIM4 also functions as a nuclear matrix targeting sequence (NMTS) for Hic-5/ARA55, as it is both necessary and sufficient to target a heterologous protein to the nuclear matrix. Thus, as suggested from previous analysis of LIM domain-containing proteins, separate but highly related LIM domains serve distinct functions.  相似文献   

16.
The LIM domain: regulation by association   总被引:2,自引:0,他引:2  
  相似文献   

17.
hhLIM是LIM蛋白家族成员之一,该蛋白质含有两个LIM结构域,在基因表达调节、细胞骨架组构及细胞肥大过程中发挥重要作用.构建hhLIM不同LIM结构域的突变体,探讨其两个LIM结构域在与actin相互结合中的作用及其可能机制.GST-pull down和hhLIM及其突变体与actin细胞定位关系的免疫荧光分析结果表明,C端的LIM结构域2是hhLIM与actin结合所必需的,该结构域中的两个Cys置换为Ser后可使hhLIM结合actin的功能完全丧失,N端的LIM结构域1突变使hhLIM结合actin的能力下降.F-actin交联实验结果显示,hhLIM通过LIM结构域2与actin直接结合并起到交联F-actin的作用.结果表明,LIM结构域2在hhLIM与actin相互作用及调节actin细胞骨架组构中起决定性作用.  相似文献   

18.
Molecular dissection of a LIM domain.   总被引:14,自引:3,他引:11       下载免费PDF全文
LIM domains are novel sequence elements that are found in more than 60 gene products, many of which function as key regulators of developmental pathways. The LIM domain, characterized by the cysteine-rich consensus CX2CX16-23HX2CX2CX2CX16-21 CX2-3(C/H/ D), is a specific mental-binding structure that consists of two distinct zinc-binding subdomains. We and others have recently demonstrated that the LIM domain mediates protein-protein interactions. However, the sequences that define the protein-binding specificity of the LIM domain had not yet been identified. Because structural studies have revealed that the C-terminal zinc-binding module of a LIM domain displays a tertiary fold compatible with nucleic acid binding, it was of interest to determine whether the specific protein-binding activity of a LIM domain could be ascribed to one of its two zinc-binding subdomains. To address this question, we have analyzed the protein-binding capacity of a model LIM peptide, called zLIM1, that is derived from the cytoskeletal protein zyxin. These studies demonstrate that the protein-binding function of zLIM1 can be mapped to sequences contained within its N-terminal zinc-binding module. The C-terminal zinc-binding module of zLIM1 may thus remain accessible to additional interactive partners. Our results raise the possibility that the two structural subdomains of a LIM domain are capable of performing distinct biochemical functions.  相似文献   

19.
Actin-related proteins (Arps) are a highly conserved family of proteins that have extensive sequence and structural similarity to actin. All characterized Arps are components of large multimeric complexes associated with chromatin or the cytoskeleton. In addition, the human genome encodes five conserved but largely uncharacterized "orphan" Arps, which appear to be mostly testis-specific. Here we show that Arp7A, which has 43% sequence identity with β-actin, forms a complex with the cytoskeletal proteins Tes and Mena in the subacrosomal layer of round spermatids. The N-terminal 65-residue extension to the actin-like fold of Arp7A interacts directly with Tes. The crystal structure of the 1-65(Arp7A)·LIM2-3(Tes)·EVH1(Mena) complex reveals that residues 28-49 of Arp7A contact the LIM2-3 domains of Tes. Two alanine residues from Arp7A that occupy equivalent apolar pockets in both LIM domains as well as an intervening GPAK linker that binds the LIM2-3 junction are critical for the Arp7A-Tes interaction. Equivalent occupied apolar pockets are also seen in the tandem LIM domain structures of LMO4 and Lhx3 bound to unrelated ligands. Our results indicate that apolar pocket interactions are a common feature of tandem LIM domain interactions, but ligand specificity is principally determined by the linker sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号