首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The nervous and the immune systems share several molecules that control their development and function. We studied the temporal and spatial distribution of the immunoreactivity of two acute-phase cytokines, TNF-alpha and IL-1beta, in the developing sheep neocortex and compared it with the well-described distribution of fetuin, a fetal glycoprotein also known to modulate the production of cytokines by lipopolysaccharide (LPS)-stimulated monocytes and macrophages. TNF-alpha was present first at embryonic day 30 (E30) (term is 150 days in sheep) as a faint band of immunoreactivity between the ventricular zone and the primordial plexiform layer (preplate). IL-1beta was detected at the first appearance of the cortical plate (E35-E40). Both cytokines were present on both sides of the cortical plate, which contained fetuin-positive cells, but was free from cytokine staining. By E60, TNF-alpha immunoreactivity was less prominent than that of IL-1beta and was confined to the marginal zone and outer developing white matter; IL-1beta was present in the marginal zone and in two bands of immunoreactive cells, one at the border of the cortical plate/developing layer VI (cells of neuronal morphology) and the other at the border of layer V and the developing white matter (identified as microglia). By E80, TNF-alpha staining had disappeared and IL-1beta-immunopositive microglia were no longer detectable. By E100-E140 only a few immunoreactive cells were identified in layers V-VI; these did not co-localize with fetuin-positive cells. The differences in distribution between fetuin and the two cytokines suggest that the opsonizing role of fetuin, proposed for monocyte production of cytokines, is probably not present in the developing brain. However, early in neocortical development TNF-alpha and IL-1beta were present in the subplate zone at a time of intense synaptogenesis.  相似文献   

3.
Stromal stem cells (CFU-f assay) from hemopoietic organs of fetuses, in contrast to adult animals, exhibit a high proliferation activity. This implies that these CFU-f are radiosensitive and potential target cells after radioactive contamination of fetuses. Furthermore, the percentage of CFU-f in DNA synthesis is correlated with the hemopoietic activity in liver, spleen, and bone marrow. As hemopoiesis starts, high numbers of CFU-f are in S phase. In fetal liver, spleen, and bone marrow, values of 70, 43, and 58%, respectively, are reached. As hemopoietic activity decreases in liver and stabilizes in spleen and bone marrow, mitotic activity of these stromal stem cells becomes undetectable.  相似文献   

4.
The adherent stromal layer in long-term marrow cultures is essential to the proliferation and differentiation of hemopoietic cells. Adhering cells are heterogeneous and morphologically not adequately characterized. Comparative morphological studies were conducted on adherent cells in short-term clonal assays and long-term cultures derived from liver and bone marrow. Liver and bone marrow at different developmental ages have different hemopoietic activities in vivo and in vitro, as tested via CFU-GM recovery in long-term cultures. Adherent cells from each organ were recovered at an age with high hemopoietic activity (fetal liver and adult bone marrow) and at an age with low hemopoietic activity (neonatal liver and bone marrow). The presence of macrophages, alkaline phosphatase, acid phosphatase, myeloperoxidase, sulfated and non-sulfated glycosaminoglycans (GAGs) and fibronectin was compared. For a given organ, CFU-f colonies showed characteristics similar to those of the confluent adherent stromal layer in long-term cultures. The presence of macrophages and GAGs (sulfated and non-sulfated) in the adherent layer were directly related to the hemopoietic activity. The amount of alkaline phosphatase-positive cells and the amount of fibronectin showed no correlation with the hemopoietic activity of the cultures.  相似文献   

5.
6.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

7.
8.
High levels of the Rel/NF-kappaB family member RelB are restricted to specific regions of thymus, lymph nodes, and Peyer's patches. In spleen, RelB is expressed in periarteriolar lymphatic sheaths, germinal centers (GCs), and the marginal zone (MZ). In this study, we report that RelB-deficient (relB(-/-)) mice, in contrast to nfkb1(-/-), but similar to nfkb2(-/-) mice, are unable to form GCs and follicular dendritic cell networks upon Ag challenge in the spleen. RelB is also required for normal organization of the MZ and its population by macrophages and B cells. Reciprocal bone marrow transfers demonstrate that RelB expression in radiation-resistant stromal cells, but not in bone marrow-derived hemopoietic cells, is required for proper formation of GCs, follicular dendritic cell networks, and MZ structures. However, the generation of MZ B cells requires RelB in hemopoietic cells. Expression of TNF ligand/receptor family members is only moderately altered in relB(-/-) splenocytes. In contrast, expression of homing chemokines is strongly reduced in relB(-/-) spleen with particularly low mRNA levels of the chemokine B lymphocyte chemoattractant. Our data indicate that activation of p52-RelB heterodimers in stromal cells downstream of TNF/lymphotoxin is required for normal expression of homing chemokines and proper development of spleen microarchitecture.  相似文献   

9.
Leukemia inhibitory factor (LIF) is a glycoprotein that induces the differentiation of the monocytic leukemia cell line M1 but suppresses the differentiation of totipotent embryonic stem cells. In an attempt to define the normal cellular targets for LIF, the distribution of LIF receptors within hemopoietic and hepatic tissue was analyzed by binding cells with radioiodinated LIF (125I-LIF) and subsequently carrying out autoradiography. Autoradiography demonstrated that in each he-mopoietic tissue examined cells of monocyte/macrophage lineage were the primary cell type labeled with 125I-LIF. Moreover, both fetal and adult parenchy-mal hepatocytes displayed higher levels of labeling than either monocytes or macrophages. The number of receptors per positive cell varied from 150 for bone marrow monocytes to 2,000 for adult hepatocytes. In each case, however, binding was of high affinity, with an apparent KD of 34–100 pM, and binding was specific, since labeling was competed for by unlabeled LIF but not a range of other structurally unrelated growth and differentiation factors. It is suggested that LIF may play a role in regulating macrophage function and hepatic acute phase protein synthesis in response to infection.  相似文献   

10.
Fetuin shows a characteristic pattern of distribution in the developing neocortex in many mammalian species. Its expression is confined to early-appearing cortical-plate and later subplate neurons. A short 19 amino-acid sequence of fetuin shows a degree of homology to an 18 amino-acid sequence of the TGF-β type II receptor (TβR-II) and in vitro fetuin binds to members of the TGF-β family of cytokines. It has been suggested that fetuin is the biologically significant antagonist of these cytokines. We have compared, using immunocytochemistry, the distribution pattern of TβR-II and fetuin in the developing neocortex of foetal sheep. TβR-II immunoreactivity first appears at around 40 days of gestation in the fetal sheep (E40, term in sheep is 150 days from conception), localised in two discreet bands: one just outside the cortical plate in the inner part of the marginal zone and one deep in the cortical plate in what becomes the transient subplate zone. By E70–E80, TβR-II is prominent in a population of subplate cells, whereas, by E120 only small patches of TβR-II-positive cells are visible, principally in pyramidal cells in layer VI. The developmental sequence of the staining pattern for TβR-II in the neocortex is complementary to that for fetuin, rather than overlapping with it. Double-labelling of fetuin and TβR-II shows some cellular co-localisation, especially at E60, but most fetuin-positive cells are not immunoreactive for TβR-II. Thus, fetuin’s proposed role as an antagonist of TGF-β cytokines and mimic of TβR-II is not consistent with the observed distribution of these two molecules in the developing neocortex of the foetal sheep. Received: 20 March 1997 / Accepted: 12 May 1997  相似文献   

11.
Current evidence indicates an immunostimulating role for complex carbohydrates, i.e., polysaccharides, from several plant sources. In the present work, we determined the specific in vivo effects, with time of administration, of one such compound, a neutral arabinogalactan from larch not only on immune (lymphoid) cells, but also on natural killer (NK) lymphoid cells, as well as a variety of other hemopoietic cells in both the bone marrow and spleen of healthy, young adult mice. The latter were injected daily (i.p.) with arabinogalactan (500 microg in 0.1 ml pH 7.2 phosphate buffered saline-PBS) for 7 or 14 days. Additional, aged (1 1/2-2 yr) mice were similarly injected for 14 days only. Control mice were given the PBS vehicle in all cases, following the above injection regimen. Animals from all groups were sampled 24 h after the final injection and the immune and hemopoietic cell populations in the bone marow and spleen were assessed quantitatively. The results indicated that immediately following either 7 or 14 days of arabinogalactan administration to young, adult mice, lymphoid cells in the bone marrow were significantly decreased (p < 0.004; p < 0.001, respectively) relative to controls but remained unchanged at both time intervals in the spleen. NK cells, after 7 days of arabinogalactan exposure, were also decreased significantly in the bone marrow (p < 0.02), but unchanged in the spleen. After 14 days' exposure to the polysaccharide, NK cells in the bone marrow had returned to normal (control) levels, but were increased in the spleen (p < 0.004) to levels greater than 2-fold that of control. Among other hemopoietic cell lineages, none was influenced in the bone marrow or spleen by one-week administration of arabinogalactan; however, after two-week exposure, precursor myeloid cells and their mature (functional) progeny (granulocytes), were significantly reduced in the spleen (p < 0.043; p < 0.006, respectively), as were splenic monocytes (p < 0.001). These lineages in the bone marrow, however, remained steadfastly unaltered even after 14 days of continuous exposure to the agent. Of the vast cascade of cytokines induced in the presence of this polysaccharide, it appears that immunopoiesis- and hemopoiesis-inhibiting ones are most prevalent during at least the first two weeks of daily exposure.  相似文献   

12.
This paper describes our study on the regeneration of hemopoietic and stromal components of bone marrow after mechanically emptying the medullar cavity of the guinea pig tibia. The intensity of hemopoiesis was determined from the number of hemopoietic cells, while the concentration and total number of stromal precursor cells were used to estimate the ability of the bone marrow to produce stromal structures, including its ability to restore a specific microenvironment. We found that there was no direct correlation between the recovery characteristics of hemopoietic and stromal cells. An increase in the population size of stromal precursor cells takes place early after curettage, and stromal fibroblasts become phosphatase-positive according to Gomori, which is characteristic of osteogenic tissue. We have also demonstrated that curettage of 3–5 tubular bones results in the growth of this cell population in the bone marrow of nonoperated bones and even in the spleen, which in guinea pigs participates only in lymphopoiesis.  相似文献   

13.
Comparative characteristics of mesenchymal stromal cells (MSCs) from adult bone marrow and fetal liver are of great interest due to the similar functions performed by these organs on the organization of a hemopoietic microenvironment at various developmental periods. It is known that MSCs play a pivotal role in the formation of niches for hemopoietic stem cells. The histogenetic relation of MSCs from these two hemopoietic organs cannot be ruled out. An analysis of antigen profile using immunocytochemistry and RT-PCR has confirmed that the studied cell populations fit the MSC criteria and have no contaminations of hemopoietic, lymphoid, and endothelial cells beginning at the second passage. Comparative analysis of osteogenic and adipogenic marker expression revealed MSC from fetal liver to have a weaker potential for adipogenesis and the extremely low capability for terminal osteogenic differentiation, in contrast to pronounced osteo- and adipogenic potentials of adult bone marrow MSC. The similar cell phenotype but different differentiation potentials under identical conditions of cultivation in vitro seem to be due to different developmental programs of the pre- and postnatal histogenesis of these MSC.  相似文献   

14.
Summary A long-term stroma-dependent culture system (LTC) has been developed which continuously produces hemopoietic cells providing an in vitro system for the study of cell differentiation. These nonadherent cell populations contain a large subpopulation of dendritic cells (DC). LTC producing DC were easily generated from spleen, but could also be established from bone marrow (BM) and lymph node with less success. It was difficult to establish DC-producing LTC from thymus. The properties of splenic and thymic stroma have been compared. Spleen stroma developed more complicated networks of fibroblasts, endothelial cells, macrophages, and DC. Thymic stromal monolayers were dominated by epithelial cells and fibroblasts, with a lower proportion of macrophages and endothelial cells. They had a relatively sparse structure of cell networks compared with spleen stroma. Cells with dendritiform morphology first appeared in cultures by 2–3 wk. The majority of cells produced were large cells which expressed DC-specific cell surface markers, major histocompatibility complex (MHC) Class II molecules, and the CD80/CD86(B7) costimulator. A high proportion of cells also expressed myeloid cell markers. No T or B lymphoid cells or granulocytes were present in the cultures. LTC continued to produce nonadherent cells resembling myeloid/DC for long periods, even after passage of stromal cells and stem cells at about 3–4 mo. after culture establishment. The LTC system offers potential to study the in vitro differentiation of myeloid/DC.  相似文献   

15.
16.
By means of plasma clot clonal cultures, the content of the avian spleen in granulomonocytic progenitors was studied during ontogeny. Serum-free media were used that were supplemented with growth activities produced either by embryonic fibroblasts or adult spleen cells. These two conditioned media not only permitted the growth of M-CFC, G-CFC, and GM-CFC but also F-CFU (fibroblast colony-forming units) from quail or chick embryonic spleen cells. The presence of spleen cell-conditioned medium promoted the development of large colonies of immature granulocytes. In the chick the first hemopoietic progenitors appeared at E9 and their number displayed two peaks, one at E15 and a smaller one at E18. In the quail the first progenitors were detected as early as E7 and their number peaked at E10. In this species, hemopoietic progenitors disappeared definitively before hatching while in the chick some were still present at P3. The progenitor content of the chick embryo spleen was compared to that of the bone marrow. This content remained stable during all of embryonic life, while the bone marrow exhibited a very different profile, where a sharp peak at E16 was followed by an acute decline and a stabilization at a rather low level. The particular profile in the spleen speaks in favor of a special role of this organ in the development of the hemopoietic system.  相似文献   

17.
Summary The radiosensitivity of hemopoietic stem cells isolated from infant mice (6 or 9 days of life), of infant preirradiated mice (exposed to 126 rad on day 6 and assayed at day 9 of life) and of adult C57/B1 mice was assayed on the basis of their capacity to form spleen colonies and to incorporate iododeoxyuridine after transplantation into heavily irradiated hosts. Stem cells of infant non-irradiated mice have a D0 of 115 rad compared to 72 rad for adult mice whereas the D0 of preirradiated infant mice has diminished to 80 rad. No significant difference in D0 was seen between spleen and bone marrow cells or between total cells and cells not sensitive to3H-thymidine. It is postulated that this sensitization of stem cells caused by a preirradiation is responsible for the greater mortality of infant mice after fractionated exposure compared to a single one.  相似文献   

18.
We have previously identified a heterodimer molecule, Z-1, on guinea pig peritoneal macrophages (Møs) by the newly prepared monoclonal antibody, anti-Z-1, and Z-1 has been assumed to be the complement receptor type three (CR3) in this species. To clarify this assumption, the cell type distribution of the antigen in guinea pig and the cross-reactivity of anti-Z-1 with other species were analyzed. It was demonstrated that Z-1 was expressed on peritoneal Møs, pulmonary Møs, peritoneal polymorphonuclear leukocytes (PMN), peripheral neutrophils, and some subpopulations of spleen cells and of bone marrow cells, but not on erythrocytes, circulating lymphocytes, and lymphocytes in both spleen and bone marrow in detectable amounts. Thus the expression of Z-1 seems to be restricted to phagocytes as is CR3 of other species. Furthermore, it was found that anti-Z-1 bound with peripheral neutrophils from human, horse and goat and HL-60 cells differentiated into monocytes. Any cross-reactivity of the antibody was not detected with neutrophils from rabbit, cow, sheep and dog and nondifferentiated HL-60 cells. Human Z-1 was indistinguishable from human CR3, since both were the heterodimer consisting of α chain of 170 kDa (pI = 6.6-7.2) noncovalently associated with β chain of 100 kDa (pI = 5.6-6.7). In addition, human CR3 in detergent-lysate of neutrophils was completely adsorbed with anti-Z-1 F(ab')2-Sepharose. These findings indicate that guinea pig Z-1 shares an antigenic determinant with human CR3. It thus seems to be possible that Z-1 may function as CR3 in guinea pigs.  相似文献   

19.
The role of the fetal spleen in hematopoeisis remains largely unknown. In this particular environment, we show that hematopoietic stem cells do not proliferate, but that they lose multipotency and differentiate exclusively into mature macrophages. B lymphocytes in the spleen derive from committed B cell precursors that are likely to have immigrated from the fetal liver. We developed fetal spleen stromal cell lines that are unique in their capacity to expand myeloid precursors, resulting in large numbers of mature macrophages. These lines secrete high levels of anti-inflammatory molecules. By phenotype, fetal splenic macrophages are reminiscent of their adult counterparts found in the red pulp. We postulate that F4/80(+) splenic macrophages participate in fetal erythropoiesis, as well as in the formation of the splenic architecture.  相似文献   

20.
BEN is a novel molecule of the immunoglobulin superfamily that we previously identified by means of a monoclonal antibody on neural cell populations during avian development and epithelial cells of the bursa of Fabricius. In this paper, we describe the expression of BEN by hemopoietic cells during ontogeny. In the thymus, BEN is expressed as early as E9, and from E12 until just after hatching 30-60% of thymocytes are BEN positive. Thus the cells expressing BEN are immature thymocytes and not yet differentiated T cells. In the spleen, BEN expression parallels the myelopoietic activity. It is present on 75% of splenocytes during embryonic development and falls rapidly to 20% of cells during the first week after hatching when the spleen is becoming a secondary lymphoid organ. BEN is also found on a large proportion (about 80% positive cells) of bone marrow cells during ontogeny. Post hatching, BEN is present on 40-50% of bone marrow cells. The population of BEN-positive cells in the bone marrow includes myeloid and erythroid progenitor cells, identified by their ability to form colonies in vitro. BEN expression is lost as progenitor cells proliferate and differentiate to develop mature colonies in the clonal assay. Mature myeloid cells, such as macrophages, granulocytes, thrombocytes, and erythrocytes do not express the BEN antigen. Taken together, these data demonstrated that BEN is a stage-specific rather than a lineage-specific differentiation antigen expressed by immature hemopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号