首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to compare the properties of free and immobilized β-galactosidase (Aspergillus oryzae), entrapped in alginate–gelatin beads and cross-linked with glutaraldehyde. The free and immobilized forms of the enzyme showed no decrease in enzyme activity when incubated in buffer solutions in pH ranges of 4.5–7.0. The kinetics of lactose hydrolysis by the free and immobilized enzymes were studied at maximum substrate concentrations of 90 g/L and 140 g/L, respectively, a temperature of 35 °C and a pH of 4.5. The Michaelis–Menten model with competitive inhibition by galactose fit the experimental results for both forms. The Km and Vm values of the free enzyme were 52.13 ± 2.8 mM and 2.56 ± 0.3 gglucose/L min mgenzyme, respectively, and were 60.30 ± 3.3 mM and 1032.07 ± 51.6 glactose/min m3catalyst, respectively, for the immobilized form. The maximum enzymatic activity of the soluble form of β-galactosidase was obtained at pH 4.5 and 55 °C. Alternatively, the immobilized form was most active at pH 5.0 at 60 °C. The free and immobilized enzymes presented activation energies of 6.90 ± 0.5 kcal/mol and 7.7 ± 0.7 kcal/mol, respectively, which suggested that the immobilized enzyme possessed a lower resistance to substrate transfer.  相似文献   

2.
The recombinant AglB produced by Pichia pastoris exhibited substrate inhibition behavior for the hydrolysis of p-nitrophenyl α-galactoside, whereas it hydrolyzed the natural substrates, including galactomanno-oligosaccharides and raffinose family oligosaccharides, according to the Michaelian kinetics. These contrasting kinetic behaviors can be attributed to the difference in the dissociation constant of second substrate from the enzyme and/or to the ability of the leaving group of the substrates. The enzyme displays the grater kcat/Km values for hydrolysis of the branched α-galactoside in galactomanno-oligosaccharides than that of raffinose and stachyose. A sequence comparison suggested that AglB had a shallow active-site pocket, and it can allow to hydrolyze the branched α-galactosides, but not linear raffinose family oligosaccharides.  相似文献   

3.
To economically produce recombinant human α-galactosidase A (GLA) with a cell culture system that does not require bovine serum, we chose methylotrophic yeast cells with the OCH1 gene, which encodes α-1,6-mannosyltransferase, deleted and over-expressing the Mnn4p (MNN4) gene, which encodes a positive regulator of mannosylphosphate transferase, as a host cell line. The enzyme (yr-hGLA) produced with the gene-manipulated yeast cells has almost the same enzymological parameters as those of the recombinant human GLA produced with cultured human fibroblasts (agalsidase alfa), which is currently used for enzyme replacement therapy for Fabry disease. However, the basic structures of their sugar chains are quite different. yr-hGLA has a high content of phosphorylated N-glycans and is well incorporated into the kidneys, the main target organ in Fabry disease, where it cleaves the accumulated glycosphingolipids. A glycoprotein production system involving this gene-manipulated yeast cell line will be useful for the development of a new enzyme replacement therapy for Fabry disease.  相似文献   

4.
The presence of multiple types of β-galactosidases in a commercial enzyme preparation from Bacillus circulans ATCC 31382 and differences in their transgalactosylation activity were investigated. Four β-galactosidases, β-Gal-A, β-Gal-B, β-Gal-C, and β-Gal-D, which were immunologically homologous, were isolated and characterized. The N-terminal amino acid sequences of all of the enzymes were identical and biochemical characteristics were similar, except for galactooligosaccharide production. β-Gal-B, β-Gal-C, and β-Gal-D produced mainly tri- and tetra saccharides at maximum yields of 20-30 and 9-12%, while β-Gal-A produced trisaccharide with 7% with 5% lactose as substrate. The Lineweaver-Burk plots for all of the enzymes, except for β-Gal-A, showed biphasic behavior. β-Gal-A was truncated to yield multiple β-galactosidases by treatment with protease isolated from the culture broth of B. circulans. Treatment of β-Gal-A with trypsin yielded an active 91-kDa protein composed of 21-kDa and 70-kDa proteins with characteristics similar to those for β-Gal-D.  相似文献   

5.
Synthesis of propyl-β-galactoside catalyzed by Aspergillus oryzae β-galactosidase in soluble form was optimized using response surface methodology (RSM). Temperature and 1-propanol concentration were selected as explanatory variables; yield and productivity were chosen as response variables. Optimal reaction conditions were determined by weighing the responses through a desirability function. Then, synthesis of propyl-β-galactoside was evaluated at the optimal condition previously determined, with immobilized β-galactosidase in glyoxyl-agarose and amino-glyoxyl-agarose, and with cross-linked aggregates (CLAGs). Yields of propyl-β-galactoside obtained with CLAGs, amino-glyoxyl-agarose and glyoxyl-agarose enzyme derivatives were 0.75, 0.81 and 0.87 mol/mol and volumetric productivities were 5.2, 5.6 and 5.9 mM/h, respectively, being significantly higher than the corresponding values obtained with the soluble enzyme: 0.47 mol/mol and 4.4 mM/h. As reaction yield was increased twofold with the glyoxyl-agarose derivative, this catalyst was chosen for evaluating the synthesis of propyl-β-galactoside in repeated batch operations. Then, after ten sequential batches, the efficiency of catalyst use was 115% higher than obtained with the free enzyme. Enzyme immobilization also favored product recovery, allowing catalyst reuse, and avoiding browning reactions. Propyl-β-galactoside was recovery by extraction in 90%v/v acetone with a purity higher than 99% and its synthesis was confirmed by mass spectrometry.  相似文献   

6.
Reversed-phase high-performance liquid chromatography (RP-HPLC) separation was used for the comparison of peptide maps of pepsin after its digestions by different forms of immobilized α-chymotrypsin. Porcine pepsin was hydrolysed with soluble α-chymotrypsin, with α-chymotrypsins glycosylated with lactose or galactose coupled to hydrazide derivative of cellulose, with α-chymotrypsin attached to poly(acrylamide-allyl glycoside) copolymer or to glycosylated hydroxyalkyl methacrylate copolymer Separon or to agarose gel Sepharose 4B. Efficiency of enzymatic protein cleavage with regard to peptide mapping of porcine pepsin has been examined by the use of α-chymotrypsins immobilized by different methods. Best results were achieved after hydrolysis with α-chymotrypsin immobilized on poly(acrylamide-allyl glycoside) copolymers. α-Chymotrypsin immobilized by this way has further three times higher relative specific activity in comparison with the soluble one. Modified α-chymotrypsin was not suitable for efficient pepsin cleavage.  相似文献   

7.
A genomic library of Bifidobacterium adolescentis was constructed in Escherichia coli and a gene encoding an -galactosidase was isolated. The identified open reading frame showed high similarity and identity with bacterial -galactosidases, which belong to Family 36 of the glycosyl hydrolases. For the purification of the enzyme from the medium a single chromatography step was sufficient. The yield of the recombinant enzyme was 100 times higher than from B. adolescentis itself. In addition to hydrolytic activity the -galactosidase showed transglycosylation activity and can be used for the production of -galacto-oligosaccharides.  相似文献   

8.
An α-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The α-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pI value of 4.5. Temperature and pH optima were 60 °C and 4.0, respectively. The enzyme was stable for 1 h at 55 °C, showing a t50 of 53 min at 60 °C. Starch protected the enzyme against thermal inactivation. The α-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The Km of α-amylase on Reagen® and Sigma® starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to α-amylases from Bacillus sp. These results confirmed that the studied enzyme was an α-amylase ((1→4)-α-glucan glucanohydrolase).  相似文献   

9.
Summary Streptomyces sp. strain EC10 degraded efficiently the hemicellulose fraction of wheat straw. Three forms of -xylanases detected in the culture filtrate were purified by precipipation with ammonium sulphate, chromatography on DEAE-Sephadex A-50 and gel filtration on Sephadex G-100. The three purified enzymes (X ia , X ib and X ii ) were homogeneous by polyacrylamide gel electrophoresis. The enzymes were typical non-debranching endo--xylanases (1,4--d-xyla xylanohydrolases; E.C.3.2.1.8) with respective relative molecular weights of 32,000, 22,000 and 21,000 and isoelectric points of 6.8, 8.9 and 5.2. The enzymes were highly specific for xylans and showed optimal activity at pH 7.0–8.0 and 60°C. The preparations were completely free from cellulolytic activity (endoglucanase) and showed high thermal stability. No synergy between the three enzymes was detected for complete xylan hydrolysis of deacetylated arabino- and glucuronoxylans.Offprint requests:to: M. J. Penninckx  相似文献   

10.
11.
12.
The magnitude of diffusional restrictions in reactions of peptide hydrolysis and synthesis was studied with α-chymotrypsin immobilized in two different size commercial glyoxal-agarose gel particles at enzyme loads of 0.25, 0.5 and 1 mg protein/g gel. Such magnitude was evaluated by determining the effectiveness factor. Results showed that the effect of diffusional restrictions was stronger for the reaction of hydrolysis than synthesis, being the effectiveness factor in some cases three times higher. Diffusional restrictions were stronger for the catalysts of larger size and with higher enzyme loads, a more than three-fold decrease in the effectiveness factor being observed when the catalyst particle radius increased four times and close to a three-fold decrease when the enzyme load was increased four times. Enzyme loads and particle sizes for avoiding diffusional restrictions in each of the reactions were determined from a steady-state mass balance to the catalyst particle.  相似文献   

13.
An extracellular α-amylase produced by a cassava-fermenting strain ofMicrococcus luteus was purified 26-fold by gel filtration and ion-exchange chromatography. The molar mass was estimated to be approximately 56 kDa. The optimum temperature of the enzyme was 30°C, optimum pH 6.0 and optimum substrate concentration was 0.6% (W/V). Treatment of the enzyme at 70°C for 10 min resulted in 70% loss of activity. The activation energy was determined to be 34.8 kJ/mol. The activity of the enzyme was enhanced by Mg2+, Ca2+, K+, Na+ and inhibited by EDTA, KCN and citric acid. The enzyme may find some application in local food processing.  相似文献   

14.
A new bioprocess for the synthesis of lactosucrose was studied using a covalently immobilized β-galactosidase on macrospheres of chitosan. The effects of temperature and pH on the production of lactosucrose and other oligosaccharides were evaluated. At 30 °C and pH 7.0, the maximum concentration of lactosucrose reached to 79 g L−1. The change of the reaction conditions allowed to modify the qualitative profile of the final products without quantitative change in the total of oligosaccharides produced. At pH 7 and 30 °C, products profile was 79 g L−1 of lactosucrose, 37 g L−1 of galactooligosaccharides and 250 g L−1 of total oligosaccharides, while at pH 5 and 64 °C the concentrations for the same compounds were 40, 62 and 250 g L−1, respectively. The immobilization increased the thermal stability up to 260-fold. Using 300 g L−1 of sucrose and 300 g L−1 of lactose, and 8.5 mg of chitosan mL−1, 30 cycles of reuse were performed and the biocatalyst kept the maximal lactosucrose synthesis. These results fulfill some important aspects for the enzyme immobilization and oligosaccharides synthesis: the simplicity of the protocols, the high operational stability of the enzyme and the possibility of driving the final products.  相似文献   

15.
At pH 8.0 and 25°C α1-proteinase inhibitor and α2-macroglobulin bind human pancreatic elastase with rate constants of 4.7·105 M−1·s−1 and 6.4·106 M−1·s−1, respectively. The corresponding delay times of elastase inhibition in plasma are 0.4 s and 0.2 s, respectively, indicating that both inhibitors may act as physiological antielastases. Elastin impairs the elastase inhibitory capacity of α1-proteinase inhibitor and α2-macroglobulin. In presence of human elastin, the former behaves like a slow-binding elastase inhibitor, with a rate constant of about 260 M−1·s−1. In contrast, α2-macroglobulin is a fast-binding inhibitor of elastin-bound elastase, but only one of its two sites is functioning in presence of elastin.  相似文献   

16.
《Acta Oecologica》1999,20(5):519-526
A series of experiments were conducted to evaluate the potential tradeoff between morphological and physiological root plasticity in caespitose and rhizomatous grass growth forms in semi-arid and mesic communities. Morphological and physiological root plasticity were evaluated with in-growth cores and excised root assays, respectively. The rhizomatous grass in the semi-arid community was the only species to display significant physiological root plasticity, but all species possessed the capacity to proportionally increase 15N uptake with increasing concentrations of (15NH4)2SO4 solution. Neither the caespitose nor the rhizomatous grass displayed morphological root plasticity in response to nitrogen addition in the mesic community. In contrast, significant morphological root plasticity occurred in species of both growth forms in the semi-arid community. These data suggest that the compact architecture and the ability to accumulate nutrients in soils directly beneath caespitose grasses did not increase selection pressure for physiological root plasticity at the expense of morphological root plasticity and that the coarse grained foraging strategy and low density of large diameter roots did not increase morphological root plasticity at the expense of physiological root plasticity in rhizomatous grasses. These preliminary data suggest that 1) a high maximum uptake rate for nitrogen in these perennial grasses may minimize the expression of physiological root plasticity, 2) morphological and physiological root plasticity may represent complimentary, rather than alternative, foraging strategies, and 3) the expression of root plasticity may be strongly influenced by abiotic variables within specific habitats.  相似文献   

17.
Purpose

Higher alcohol is a by-product of the fermentation of wine, and its content is one of the most important parameters that affect and are used to appraise the final quality of Chinese rice wine. Ammonium compensation is an efficient and convenient method to reduce the content of higher alcohols, but the molecule mechanism is poorly understood. Therefore, an iTRAQ-based proteomic analysis was designed to reveal the proteomic changes of Saccharomyces cerevisiae to elucidate the molecular mechanism of ammonium compensation in reducing the content of higher alcohols.

Methods

The iTRAQ proteomic analysis method was used to analyze a blank group and an experimental group with an exogenous addition of 200 mg/L (NH4)2HPO4 during inoculation. The extracted intracellular proteins were processed by liquid chromatography-mass spectrometry and identified using bioinformatics tools. Real-time quantitative polymerase chain reaction was used to verify the gene expression of differentially expressed proteins.

Results

About 4062 proteins, including 123 upregulated and 88 downregulated proteins, were identified by iTRAQ-based proteomic analysis. GO and KEGG analysis uncovered that significant proteins were concentrated during carbohydrate metabolism, such as carbon metabolism, glyoxylate, and dicarboxylate metabolism, pyruvate metabolism, and the nitrogen metabolism, such as amino acid synthesis and catabolism pathway. In accordance with the trend of differential protein regulation in the central carbon metabolism pathway and the analysis of carbon metabolic flux, a possible regulatory model was proposed and verified, in which ammonium compensation facilitated glucose consumption, regulated metabolic flow direction into tricarboxylic acid, and further led to a decrease in higher alcohols. The results of RT-qPCR confirmed the authenticity of the proteomic analysis results at the level of gene.

Conclusion

Ammonium assimilation promoted by ammonium compensation regulated the intracellular carbon metabolism of S. cerevisiae and affected the distribution of metabolic flux. The carbon flow that should have gone to the synthesis pathway of higher alcohols was reversed to the TCA cycle, thereby decreasing the content of higher alcohols. These findings may contribute to an improved understanding of the molecular mechanism for the decrease in higher alcohol content through ammonium compensation.

  相似文献   

18.
Interactions of α-chymotrypsin with 2-coumaranone (I), 3,4-dihydrocoumarin (II), o-hydroxy-α-toluenesulfonic acid sultone (III), and β-o-hydroxyphenylethanesulfonic acid sultone (IV) were studied in the presence of 14% acetonitrile at pH 7.0 by means of the proflavin displacement technique and by inhibition of N-acetyl-l-tryptophan ethyl ester (ATrEE) hydrolysis. Under saturating conditions of either I, II, or III, an enzyme intermediate was shown to accumulate using either the proflavin displacement technique or the ATrEE activity assay. The intermediates have characteristics of covalent enzyme-substrate compounds and are believed to decompose simultaneously by two pathways, one to give free enzyme and hydrolyzed cyclic ester, and the other to give the original cyclic ester and free enzyme. With α-chymotrypsin and III the observed first-order rate constant for decomposition of the intermediate by the two pathways was 0.19 ± 0.04 min?1, while the rate constant for the hydrolytic pathway alone was 0.013 ± 0.0009 min?1. These results indicate that the covalent-like intermediate with this sultone is not only capable of reverting to starting cyclic ester but prefers this pathway over hydrolysis. Sultone IV was found to bind to enzyme; but in contrast to the behavior of esters I–III, the binding did not result in accumulation of a covalent-like intermediate.  相似文献   

19.
Summary Biosensor analysis of peptide synthesis in organic solvents using immobilized -chymotrypsin is described. It is shown that with the enzyme thermistor sensor used, a direct correlation exists between the negative T-values registered and the amount of peptides formed (essentially various N-acetyldipeptide amides) allowing concentrations of 0.1 mM peptide and lower to be determined directly in the reaction medium.  相似文献   

20.
Fabry disease is an inherited lysosomal disorder caused by a deficiency of alpha-galactosidase A (α-gal A). The systemic accumulation of substrate, mainly globotriaosylceramide (Gb3), results in organ failure. Although Gb3 accumulation has been observed in an α-gal A-deficient mouse model, important clinical manifestations were not seen. The pursuit of effective treatment for Fabry disease through gene therapy, for example, has been hampered by the lack of a relevant large animal model to assess the efficacy and safety of novel therapies. Towards assembling the tools to generate an alternative animal model, we have sequenced and characterized the porcine ortholog of the α-gal A gene. When compared to the human α-gal A, the porcine α-gal A showed a high level of homology in the coding regions and located at chromosome Xq22. Cell lysate and supernatants from Fabry patient-derived fibroblasts transduced with a lentiviral vector (LV) carrying the porcine α-gal A cDNA (LV/porcine α-gal A), showed high levels of α-gal A activity and its enzymological stability was similar to that of human α-gal A. Uptake of secreted porcine α-gal A was observed into non-transduced cells and was partially inhibited by soluble mannose-6-phosphate. Furthermore, Gb3 accumulation was reduced in Fabry patient-derived fibroblasts transduced with the LV/porcine α-gal A. In conclusion, we elucidated and characterized the porcine α-gal A gene and enzyme. Similarity in enzymatic profile and chromosomal location between α-gal A of porcine and human origins may be of great advantage for the development of a large animal model for Fabry disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号