首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immobilized glycoconjugates for cell recognition studies   总被引:2,自引:0,他引:2  
Specific cell-cell recognition and adhesion may involve cell surface glycoconjugates on one cell binding the complementary carbohydrate receptors on an apposing cell surface. Such interactions have been modeled by immobilizing simple synthetic glycosides, glycoproteins, glycosaminoglycans, and glycolipids on otherwise inert plastic surfaces and incubating them with intact cells. Using this approach, the ability of several cell types to recognize specific carbohydrates has been demonstrated. This carbohydrate-directed cell adhesion may depend on cell surface carbohydrate receptors which mediate both the initial specific adhesion and complex postrecognition cellular responses. While the relationship of the cell adhesion demonstrated here to cell-cell recognition in vivo has yet to be determined, this well-controlled biochemical approach may reveal new information on the way in which cells analyze and respond to their immediate external environment.  相似文献   

2.
Adhesion receptors play crucial roles in the neoplastic transformation of normal cells through induction of cancer-specific cellular behaviour and morphology. This implies that cancer cells likely express and utilize a distinct set of adhesion receptors during carcinogenesis. Colon cancer is an excellent model system for the study of this process, since both molecular genetic and morphological changes have been well established for this disease. We recently reported increased expression of the cell surface adhesion receptor, syndecan-2, in several colon carcinoma cell lines. Indeed, increased syndecan-2 expression was necessary for tumourigenic activity, suggesting that syndecan-2 might have value as both a new diagnostic marker and a possible therapeutic target. Here, we review recent advances in understanding the role of syndecan-2 in the carcinogenesis of colon cells, and discuss a leading role for this molecule in a new era for colon cancer treatment.  相似文献   

3.
Kwon MJ  Jang B  Yi JY  Han IO  Oh ES 《FEBS letters》2012,586(16):2207-2211
Syndecan are a family of cell surface heparan sulfate proteoglycans that act as cell surface receptors. Most cell surface receptors have a limited number and type of ligand interactions, responding only to the binding of (a) specific ligand(s). In contrast, syndecans can interact with various numbers and types of ligands, and thus play more diverse roles than others. Various syndecan functions have not yet been fully classified and categorized, but we herein review previous studies suggesting that syndecans play dual function as cell surface receptors by acting as both adhesion receptors and docking receptors. Through this dual regulatory function, syndecans are capable of regulating both intra- and extracellular activities, potentially altering a variety of cell behaviors.  相似文献   

4.
Excitatory Eph receptors and adhesive ephrin ligands   总被引:10,自引:0,他引:10  
Ephrins are cell surface associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance, cell migration, topographic mapping and angiogenesis. During the past year, Eph receptors have been shown to associate with glutamate receptors in excitatory neurons, suggesting a role in synapse formation or function. Moreover, ephrin/Eph signaling appears to regulate neural stem cell proliferation and migration in adult mouse brains. The mode of action of ephrin/Ephs has been expanded from repulsion to adhesion and from cell surface attachment to regulated cleavage.  相似文献   

5.
The immunoglobulin domain is a module found in vertebrates and invertebrates. Its ability to form linear rods when deployed in series, combined with its propensity to bind specifically to other proteins has made it ideal for building cell surface receptors and cell adhesion molecules. These features have resulted in the incorporation of immunoglobulin domains into many hundreds of cell surface molecules. Recently three major advances have been made in understanding immunoglobulin receptors. One is the recognition that their intracellular binding partners are likely to link to multiple cell surface molecules, allowing cross-talk or oligomeric complex formation. A second, but related phenomenon, is their participation in cis-interactions on the extracellular surface that regulate signaling or adhesion. The third is the dramatic ability to form dozens to thousands of different isoforms via alternative splicing. Although antibodies may have been the first example of immunoglobulin-domain-containing proteins using cis-interactions to form receptor like molecules, and the grandest instance of diversity production from limited genetic material, these are clearly old ideas in this superfamily.  相似文献   

6.
The ability of cells to interact with each other and their surroundings in a co-ordinated manner depends on multiple adhesive interactions between neighbouring cells and their extracellular environment. These adhesive interactions are mediated by a family of cell surface proteins, termed cell adhesion molecules. Fortunately these adhesion molecules fall into distinct families with adhesive interactions varying in strength from strong binding involved in the maintenance of tissue architecture to more transient, less avid, dynamic interactions observed in leukocyte biology. Adhesion molecules are extremely versatile cell surface receptors which not only stick cells together but provide biochemical and physical signals that regulate a range of diverse functions, such as cell proliferation, gene expression, differentiation, apoptosis and migration. In addition, like many other cell surface molecules, they have been usurped as portals of entry for pathogens, including prions. How the mechanical and chemical messages generated from adhesion molecules are integrated with other signalling pathways (such as receptor tyrosine kinases and phosphatases) and the role that aberrant cell adhesion plays in developmental defects and disease pathology are currently very active areas of research. This review focuses on the biochemical features that define whether a cell surface molecule can act as an adhesion molecule, and discusses five specific examples of how cell adhesion molecules function as more than just 'sticky’ receptors. The discussion is confined to the signalling events mediated by members of the integrin, cadherin and immunoglobulin gene superfamilies. It is suggested that, by controlling the membrane organization of signalling receptors, by imposing spatial organization, and by regulating the local concentration of cytosolic adapter proteins, intercellular and cell-matrix adhesion is more than just glue holding cells together. Rather dynamic ‘conversations’ and the formation of multi-protein complexes between adhesion molecules, growth factor receptors and matrix macromolecules can now provide a molecular explanation for the long-observed but poorly understood requirement for a number of seemingly distinct cell surface molecules to be engaged for efficient cell function to occur.  相似文献   

7.
T cell adhesion molecules   总被引:7,自引:0,他引:7  
Cell adhesion or conjugate formation between T lymphocytes and other cells is an important early step in the generation of the immune response. Although the antigen-specific T cell receptor confers antigen recognition and specificity, a number of other molecules expressed on the T cell surface are involved in the regulation of lymphocyte adhesion. T cell molecules that function to strengthen adhesion include lymphocyte function-associated antigen (LFA)-1, CD2, CD4, and CD8. Their ligands have recently been identified. LFA-1 is a member of the integrin family of adhesion receptors and one of its ligands is intercellular adhesion molecule-1 (ICAM-1); a ligand for CD2 is LFA-3; and ligands for CD4 and CD8 appear to be major histocompatibility complex class II and class I molecules, respectively. In addition, T cells express a number of receptors thought to be involved in cell matrix adhesion. The function and significance of these T cell adhesion receptors and their ligands are reviewed.  相似文献   

8.
Cell invasion requires cooperation between adhesion receptors and matrix metalloproteinases (MMPs). Membrane type (MT)-MMPs have been thought to be primarily involved in the breakdown of the extracellular matrix. Our report presents evidence that MT-MMPs in addition to the breakdown of the extracellular matrix may be engaged in proteolysis of adhesion receptors on tumor cell surfaces. Overexpression of MT1-MMP by glioma and fibrosarcoma cells led to proteolytic degradation of cell surface tissue transglutaminase (tTG) at the leading edge of motile cancer cells. In agreement, structurally related MT1-MMP, MT2-MMP, and MT3-MMP but not evolutionary distant MT4-MMP efficiently degraded purified tTG in vitro. Because cell surface tTG represents a ubiquitously expressed, potent integrin-binding adhesion coreceptor involved in the binding of cells to fibronectin (Fn), the proteolytic degradation of tTG by MT1-MMP specifically suppressed cell adhesion and migration on Fn. Reciprocally, Fn in vitro and in cultured cells protected its surface receptor, tTG, from proteolysis by MT1-MMP, thereby supporting cell adhesion and locomotion. In contrast, the proteolytic degradation of tTG stimulated migration of cells on collagen matrices. Together, our observations suggest both an important coreceptor role for cell surface tTG and a novel regulatory function of membrane-anchored MMPs in cancer cell adhesion and locomotion. Proteolysis of adhesion proteins colocalized with MT-MMPs at discrete regions on the surface of migrating tumor cells might be controlled by composition of the surrounding ECM.  相似文献   

9.
Chen A  Moy VT 《Biophysical journal》2000,78(6):2814-2820
Cooperativity of molecular adhesion has been proposed as a mechanism for enhanced binding strength of adhesion molecules on the cell surface. Direct evidence for its mechanism, however, has been lacking until now. Atomic force microscopy (AFM) was used to measure the adhesive strength between concanavalin A (Con A) coupled to an AFM tip and Con A receptors on the surface of NIH3T3 fibroblast cells. Cross-linking of receptors with either glutaraldehyde or 3, 3'-dithio-bis(sulfosuccinimidylproprionate) (DTSSP) led to an increase in adhesion that could be attributed to enhanced cooperativity among adhesion complexes. An increase in loading rate due to greater stiffness of fixed cells also contributed to the twofold increase in binding strength. These results show that receptor cross-linking can greatly contribute to a total increase in cell adhesion by creating a shift toward cooperative binding of receptors.  相似文献   

10.
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) appeared during the evolution of vertebrates as a new mechanism for regulation of cell interactions. This large and abundant glycoprotein can exert steric effects at the cell surface that lead to the attenuation of cell-cell bonds mediated not only by NCAM but also a variety of other adhesion receptors. PSA-NCAM expression changes both as a result of developmental programs and physiological inputs. This global modulation of cell-cell attachment has been shown to facilitate cell migration, axon pathfinding and targeting, and plastic changes in the embryonic and adult nervous system.  相似文献   

11.
The ability of cells to interact with each other and their surroundings in a co-ordinated manner depends on multiple adhesive interactions between neighbouring cells and their extracellular environment. These adhesive interactions are mediated by a family of cell surface proteins, termed cell adhesion molecules. Fortunately these adhesion molecules fall into distinct families with adhesive interactions varying in strength from strong binding involved in the maintenance of tissue architecture to more transient, less avid, dynamic interactions observed in leukocyte biology. Adhesion molecules are extremely versatile cell surface receptors which not only stick cells together but provide biochemical and physical signals that regulate a range of diverse functions, such as cell proliferation, gene expression, differentiation, apoptosis and migration. In addition, like many other cell surface molecules, they have been usurped as portals of entry for pathogens, including prions. How the mechanical and chemical messages generated from adhesion molecules are integrated with other signalling pathways (such as receptor tyrosine kinases and phosphatases) and the role that aberrant cell adhesion plays in developmental defects and disease pathology are currently very active areas of research. This review focuses on the biochemical features that define whether a cell surface molecule can act as an adhesion molecule, and discusses five specific examples of how cell adhesion molecules function as more than just 'sticky' receptors. The discussion is confined to the signalling events mediated by members of the integrin, cadherin and immunoglobulin gene superfamilies. It is suggested that, by controlling the membrane organization of signalling receptors, by imposing spatial organization, and by regulating the local concentration of cytosolic adapter proteins, intercellular and cell-matrix adhesion is more than just glue holding cells together. Rather dynamic 'conversations' and the formation of multi-protein complexes between adhesion molecules, growth factor receptors and matrix macromolecules can now provide a molecular explanation for the long-observed but poorly understood requirement for a number of seemingly distinct cell surface molecules to be engaged for efficient cell function to occur.  相似文献   

12.
Clustering of integrin receptors during cell adhesion stimulates signal transduction across the cell membrane. Second messengers are generated, activating cytosolic proteins and causing cytoskeletal assembly and rearrangement. HeLa cell adhesion to a collagen substrate has been shown to initiate an arachidonic acid-mediated signaling pathway, leading to the activation of protein kinase C (PKC) and cell spreading. To determine the role of integrin receptors in triggering this signaling pathway, monoclonal antibodies to beta 1 integrins were used to either cluster integrins on the cell surface or to provide an integrin-dependent substrate for cell adhesion. Using this approach, we have defined a pathway required for cell spreading that can be initiated by the ligation of integrins and leads to the activation of PKC. Specifically, our results indicate that clustering beta 1 integrins results in the activation of phospholipase A2 leading to the production of arachidonic acid and the activation of PKC.  相似文献   

13.
Aqueous extract of human placenta, used as wound healer, has shown significant cell adhesion property on mouse peritoneal macrophages and P388D1 cultured macrophage cell line. This property was offered primarily by fibronectin type III like peptide present in the extract and is comparable to fibronectin on a molar basis. The peptide induce adhesion of cell through cell surface receptors having K(d) = 2.8 +/- 0.9 x 10(-5) M suggesting weak binding. This is in support of integrins receptors that typically exhibit low affinities. Cell adhesion was partially inhibited by Arg-Gly-Asp (RGD) peptide, anti-beta1 integrin suggesting that integrin beta1 receptors have roles to play in the process.  相似文献   

14.
Ligation of cell surface matrix adhesion receptors such as integrins can increase expression of specific cell cycle regulatory proteins such as cyclin A, thereby regulating cell cycle progression. Disruption of cell surface matrix receptor interaction with the extracellular matrix can trigger apoptosis. Induction of apoptosis has been linked to unscheduled up-regulation of cyclin A and activation of cyclin-A-associated dependent kinase 2 activity due to cleavage of cyclin-dependent kinase inhibitors by caspases. We have found that ligation of the cell surface matrix adhesion receptor CD44 by anti-CD44 antibody induces cell detachment and triggers apoptosis. In this report we show that ligation of CD44 by anti-CD44 antibody increases the expression of cyclin A protein prior to activation of caspase-3-like activity and morphological changes of apoptosis. Down-regulation of cyclin A protein levels by cyclin A antisense oligonucleotides dramatically decreased fibroblast apoptosis in response to anti-CD44 antibody. These data identify an important functional role of cyclin A in the induction of fibroblast apoptosis due to the ligation of the cell surface adhesion receptor CD44 by anti-CD44 antibody.  相似文献   

15.
Paradigms for glycan-binding receptors in cell adhesion   总被引:2,自引:0,他引:2  
Diverse glycans found on the surfaces of mammalian cells provide a basis for selective adhesion between cells mediated by glycan-specific receptors. Well-understood examples of cell adhesion based on such interactions include selectin-mediated rolling of leukocytes on endothelia. Other receptors with similar selectivity for specific sugar epitopes on cell surfaces are being characterised. However, the simple paradigm of adhesion resulting from receptors on one cell binding to glycans on another cell applies in only a limited number of systems. Instead, glycans and receptor-glycan interactions often modulate adhesion in indirect ways, such as by changing the organisation of cell surface glycoproteins and by antagonising the effect of protein adhesion systems.  相似文献   

16.
Embryonal carcinoma (EC) cells possess a complex cell surface glycoconjugate called lactosaminoglycan, whose core structure is composed of repeating N-acetyllactosamine (Gal leads to GlcNAc) disaccharides. Recent studies suggest that the cell surface receptor for lactosaminoglycan is galactosyltransferase, which binds terminal GlcNAc residues on various side chains, thus anchoring the glycoconjugate to the cell surface (Shur, B. D. (1982). J. Biol. Chem. 257, 6871-6878.). The results described in this paper suggest that multivalent lactosaminoglycans mediate EC cell adhesions by binding to their surface galactosyltransferase receptors. In the presence of UDPgalactose, but not other sugar nucleotides, EC cell adhesion is reduced and preformed cell adhesions are dissociated. UDPgalactose interferes with EC cell adhesion by forcing the galactosyltransferase reaction to completion, thus dissociating the enzyme from its galactosylated substrate (i.e., lactosaminoglycan), and thereby dissociating EC cells from one another. Lactosaminoglycans purified from EC cell cultures rapidly agglutinate EC cells, and EC cells preferentially adhere to substrates irreversibly derivatized with protein- and lipid-free lactosaminoglycan side chains. Under identical conditions, EC cells do not adhere to either hyaluronate- or chondroitin sulfate-derivatized substrates, relative to underivatized control surfaces. EC cell adhesion to other cells and to lactosaminoglycan-derivatized surfaces can be inhibited by reagents that selectively interfere with surface galactosyltransferase activity. First, alpha-lactalbumin specifically reduces the galactosyltransferase's affinity for its lactosaminoglycan substrate and simultaneously inhibits adhesion. Similar levels of bovine serum albumin have no effect. Second, selective inhibition of surface galactosyltransferase with UDP-dialdehyde also inhibits adhesion, while similar levels of AMP-dialdehyde do not. Results show that 1 mM Ca2+ protects the surface galactosyltransferase activity from proteolysis, which suggests the galactosyltransferase is one of the Ca2+-dependent EC cell adhesion molecules. SDS-PAGE fluorography and gel chromatography analyses have determined that the principal lactosaminoglycan substrate for EC surface galactosyltransferase has an apparent molecular weight of 90K. Taken together, these results suggest that lactosaminoglycans participate in EC cell adhesion by binding to their surface galactosyltransferase receptors.  相似文献   

17.
Triflavin, a 7.5-kDa cysteine-rich polypeptide purified from Trimeresurus flavoviridis snake venom, belongs to a family of RGD-containing peptides, termed disintegrins, that have been isolated from the venoms of various vipers and shown to be potent inhibitors of platelet aggregation. The interaction of tumor cells with extracellular matrices such as fibronectin, vitronectin, and collagen has been shown to be mediated through a family of cell surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) sequence within each adhesive protein. In this study, we show that triflavin dose-dependently inhibited adhesion of human cervical carcinoma (HeLa) cells to extracellular matrices (ECMs; i.e., fibronectin, fibrinogen, and vitronectin). On the other hand, triflavin exerted a limited inhibitory effect on cell adhesion to laminin and collagen (type I and IV). On a molar basis, triflavin is approximately 800 times more potent than Gly-Arg-Gly-Asp-Ser (GRGDS) at inhibiting cell adhesion. When immobilized on plate, triflavin significantly promoted HeLa cell adhesion, and this attachment was inhibited by GRGDS. Furthermore, FITC-conjugated triflavin bound to cells in a saturable manner and its binding was inhibited by GRGDS. In addition, triflavin did not affect [3H]thymidine uptake of HeLa cells during a 3-day incubation. These results suggest that triflavin probably binds to integrin receptors expressed on HeLa cell surface via its RGD sequence within its molecule, thereby inhibiting the adhesion of extracellular matrices to HeLa cells.  相似文献   

18.
An important aspect of the function of the membrane-associated cytoskeleton has been suggested to be to trap and retain selected transmembrane proteins at points on the cell surface specified by cell adhesion molecules. In the process, cell adhesion molecules are cross-linked to each other, and so junctional complexes are strengthened. In this short review, we will discuss recent advances in understanding the role of this "accumulation machine" in postsynaptic structures. Function in the brain depends on correct ordering of synaptic intercellular junctions, and in particular the recruitment of receptors and other apparatus of the signalling system to postsynaptic membranes. Spectrin has long been known to be a component of postsynaptic densities, and recent advances in molecular cloning indicate that beta spectrins at PSDs are all "long" C-terminal isoforms characterised by pleckstrin homology domains. Isoforms of protein 4.1 are also present at synapses. All four 4.1 proteins are represented in PSD preparations, but it is 4.1R that is most enriched in PSDs. 4.1R binds to several proteins enriched in PSDs, including the characteristic PSD intermediate filament, alpha-internexin. Both 4.1 and spectrin interact with ionotropic glutamate receptors (AMPA and NMDA receptors, respectively): 4.1 stabilises AMPA receptors on the cell surface. By linking these receptors to the cytoskeletal and cell adhesion molecules that specify glutamatergic synapses, the membrane protein accumulation machine is suggested to direct the formation of postsynaptic signalling complexes.  相似文献   

19.
Fetuin-A is a major constituent of the fetal bovine serum used extensively in cell culture media. We hereby present data demonstrating that breast carcinoma cells can adhere to immobilized fetuin-A in a calcium-dependent fashion. Interestingly, the cells can also divide and attain confluency under these conditions. Using a proteomic approach, we have identified annexin-II and -VI as the putative cell surface receptors for fetuin-A in the presence of Ca2+ ions. Biotinylation of cell surface proteins followed by immunoprecipitation revealed that annexin-VI was expressed on the extracytoplasmic surface of the cell membranes. Finally, to demonstrate that annexin-II and -VI were the adhesive receptors for fetuin-A, siRNA knockdown of expression of the annexins significantly reduced the calcium-mediated adhesion. Interestingly, we demonstrated that the tumor cells could also adhere to immobilized fetuin-A in the presence of magnesium ions, and that this adhesion was most likely mediated by integrins because neutralizing antibodies against beta1 integrins substantially reduced the adhesion. Our studies suggest that the expression of annexin-II and -VI and possibly other members of the family mediate novel adhesion and signaling mechanisms in tumor cells.  相似文献   

20.
Cairo CW  Golan DE 《Biopolymers》2008,89(5):409-419
Cell surface receptors mediate the exchange of information between cells and their environment. In the case of adhesion receptors, the spatial distribution and molecular associations of the receptors are critical to their function. Therefore, understanding the mechanisms regulating the distribution and binding associations of these molecules is necessary to understand their functional regulation. Experiments characterizing the lateral mobility of adhesion receptors have revealed a set of common mechanisms that control receptor function and thus cellular behavior. The T cell provides one of the most dynamic examples of cellular adhesion. An individual T cell makes innumerable intercellular contacts with antigen presenting cells, the vascular endothelium, and many other cell types. We review here the mechanisms that regulate T cell adhesion receptor lateral mobility as a window into the molecular regulation of these systems, and we present a general framework for understanding the principles and mechanisms that are likely to be common among these and other cellular adhesion systems. We suggest that receptor lateral mobility is regulated via four major mechanisms-reorganization, recruitment, dispersion, and anchoring-and we review specific examples of T cell adhesion receptor systems that utilize one or more of these mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号