首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims After abandonment of grasslands, secondary succession leads to the invasion by woody species. This process begins with the accumulation of tree litter in the forest–grassland ecotone. Our objectives were to determine the relationships between litter amounts and vegetation composition and cover along natural forest–grassland ecotones and to experimentally study the initial effects of tree litter accumulation on grassland vegetation and on microsite conditions.Methods We established 11 transects varying from 12 to 15 m in length in different forest–grassland ecotones in the Lahn-Dill highlands, Germany, and measured the mass and cover of tree litter and the cover and composition of vegetation at five sequential positions along each transect by using 1 m 2 plots with five replications. In a field experiment, we established plots subjected to different litter amounts (0, 200 and 600g m ?2) and evaluated changes in grassland vegetation, soil temperature and soil nutrient availability below the litter layer.Important findings Tree litter amounts decrease from 650 to 65g m ?2 across the forest–grassland ecotone. Vegetation changed from shrubs and annual species (adapted to more stressful conditions) in the forests edge to grasses, rosettes and hemirosette species (with higher competitive abilities) in the grassland. These anthropogenic forest–grassland ecotones showed abrupt edges, and the two adjacent ecosystems were characterized by different species pools and functional groups. In the field experiment, the presence of a litter layer reduced vegetation biomass and cover; the species richness was only reduced in the treatment with high litter (600g m ?2). Additionally, adding litter on top of vegetation also reduced thermal amplitude and the number of frost days, while increasing the availability of some nutrients, such as nitrogen and aluminium, the latter being an indicator of soil acidification. Adding a tree litter layer of 600g m ?2 in grassland areas had strong effects on the composition and diversity of grassland vegetation by reducing the cover of several key grassland species. In, or near, forest edges, litter accumulation rapidly changes established vegetation, microsite conditions and soil nutrients.  相似文献   

2.
The influence of afforestation with cedars on field layer vegetation and on the germinable soil seed-bank were investigated along a 60-m transect merging from open grassland to sparse and dense canopy cover. A total of 132 species were found, 76 in the seed-bank and 109 in the vegetation, with 53 species in common. Conifer cover was not found to be associated with a decrease in total number of species in the vegetation or seed-bank, but the mean number of species in the vegetation, total cover in field layer vegetation and mean number of individuals in the seed-bank decreased significantly from grassland to forest stands. The grassland seed-bank was dominated by Saxifraga tridactylites and Veronica agrestis; the seed-bank of plots of scattered cedars was dominated by Trifolium incarnatum ssp. molinerii; and that of dense cedar plantations was dominated by Campanula rapunculus. The number and cover of grassland species of field layer vegetation decreased in the forest, with respect to open grassland, and the same trend was found for density of individuals in the seed-bank. It is concluded that grassland restoration by cutting cedars cannot rely on the presence of grassland species in the soil seed-bank.  相似文献   

3.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

4.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

5.
The vegetation and environmental conditions of south Swedish hornbeam Carpinus betulus forests are described with data from 35 permanent sample plots The main floristic gradient of the ground vegetation is closely related to acid-base properties of the top soil base saturation, pH and organic matter content Other floristic differences are related to tree canopy cover and the distance of the sample plots to the Baltic coast Species richness of herbaceous plants typical of forests increases with soil pH, The number of other herbaceous species, occurring in both forests and open habitats, and of woody species is not related to pH Comparisons of vegetation data from 1983 and 1993 show relatively small compositional differences of the herbaceous forest flora The number of other herbaceous species increased considerably m those plots where canopy trees had been cut after 1983 The number of new species in managed plots increases with soil pH Species losses and gains of the herbaceous forest flora between 1983 and 1993 are generally lower as compared with other herbaceous species and woody species However, the ground cover of herbaceous forest species, especially of Oxalis acetosella and Lamium galeobdolon , was considerably lower in 1993 as compared to 1983 in both unmanaged and managed plots Possible explanations for this decrease are current soil acidification and drought during the growing season  相似文献   

6.
Vegetation mosaics of grassland/savanna and forest can be found in tropical and subtropical regions of the world, as in southern Brazil, where climate conditions are suitable for forest. Changes in intensity or frequency of disturbances could enable woody species encroachment in grassland communities; however, the processes are related to site conditions and life history of pioneer species. In this paper, we study transition patterns of forest to grassland in the absence of grazing, but under different site conditions related to aspect (landscape position) and time since the last burn. Data are based on shrub and tree species composition and soil variables at forest–grassland boundaries. We found 119 woody species of 42 families along transects of 27 m into the forest and 31.5 m into the grassland. Gradients from forest to grassland were analysed as compositional trajectories in ordination space and differences in the spatial patterns depicted between distinct site aspects. The time since the last fire did not influence these patterns. Inside the forest, tree species diversity was significantly higher close to the edge, independent of the density of individuals. Two main mechanisms may promote forest expansion into the grassland. First, a gradual tree encroachment near the edge and, second, a mechanism linked to the recruitment of isolated pioneer trees within the grassland matrix, most frequently near rocky outcrops, where a decrease in grass biomass leads to low-intensity fires. Despite vegetation patterns at boundaries differing according to aspect, the most important explanatory factor was the distance from the forest border, not just by itself, but with all correlated parameters that are changing along the gradient.  相似文献   

7.
8.
《Acta Oecologica》2005,27(1):57-66
Our main aim was to determine the contribution of the seed bank to vegetation regeneration following a disturbance consisting in a deep ploughing and a thorough homogenisation of a perennial grassland. In the seed bank prior to disturbance, seed distribution through the vertical soil profile was evaluated to determine the initial seed species structure. Then, several characteristics of the shallow seed bank and the extant vegetation were evaluated prior and following field disturbance: seed species composition and abundance, and species composition of the aboveground vegetation. The contribution of seed rain versus seed bank was evaluated by means of the comparison of the vegetation developed in plots filled with sterilised soil (seed bank removal) and the vegetation developed in non-sterilised plots in the field. The distribution of seeds through the profile indicated a sharp decline in abundance with depth, and it was probably linked to propagule morphology, with small and rounded seeds proner to being buried deeper than larger seeds. In the grassland prior to disturbance, the aboveground vegetation and seed bank species composition showed very low similarity index, most likely because during the 5 years following field abandonment, sheep pressure had caused a faster change in aboveground vegetation species composition than in seed bank species composition. Ploughing and homogenisation of the grassland led to low seed abundance in the shallow soil layer caused by dilution of the seed bank. Regardless of impoverishment in seed abundance and species richness, comparison between sterilised and non-sterilised plots showed that the seed bank acted as an effective source of colonising species and determined the aboveground species composition. To summarise, this study outlines the importance of considering several characteristics of the seed bank, such as species composition and seed abundance, in the understanding of the function of seed bank and dynamics of the vegetation following a deep ploughing and homogenisation treatment.  相似文献   

9.
Question: Are the seed banks of an isolated subtropical oceanic island capable of naturally regenerating vegetation either with species of the historical forest community or with the existing grassland community after severe damage to the vegetation by goats? Location: Nakoudojima Island, Bonin Archipelago (Ogasawara Shoto), Japan. Methods: Soil samples were collected at 0–5 cm and 5–10 cm depths from seven plots in forests, grasslands, artificially matted areas and bare land. Soil seed banks were assessed using the seedling emergence method followed by the hand‐sorting of ungerminated seeds. We determined the size and composition of the seed banks in upper soil layers of plots and compared the seed banks to the standing vegetation. Results: A total of 12 220 seedlings belonging to 42 species from 20 families germinated. Total mean seed density (0–5 cm depth) was low in all plots within forest, grassland, and heavily degraded vegetation types (34.7 ± 8.6 to 693.5 ± 123.6, 58.6 ± 7.8 to 107.1 ± 10.0, and 1.1 ± 0.5 to 7.2 ± 2.3 seeds/m2, respectively). Forbs and graminoids dominated the seed banks of grassland and forest plots including Cyperus brevifolius, Gnaphalium pensylvanicum, Oxalis corniculata and Solanum nigrum, and these alien species comprised 90% of the density of the seed bank. There was little correlation between seed banks and standing vegetation of the island (Sørensen similarity coefficient values 0.26 to 0.45). Conclusions: If natural regeneration occurs from the seed bank of the island, future vegetation will not move toward the original forest community, because the seed bank is dominated by non‐native herbaceous grassland species. Though isolated, a few forest remnants with low species richness could be an important source for the natural re‐establishment of forest on the island; however, seed availability may be limited by either poor dispersal or pollination so that woody species will probably recover very slowly on this goat‐impacted island.  相似文献   

10.
长株潭城市群生态绿心地区地处南方红壤丘陵区的中心地带, 植被区划上属中亚热带常绿阔叶林北部植被亚地带。该区植被以次生林为主, 植被类型复杂多样, 在南方红壤丘陵区现状植被中具有典型代表性, 可为区域植被演替动态和植被恢复研究提供良好的平台。该研究采用统一、规范的方法设置了50个样方, 对区内主要植被类型的物种组成、数量特征、生境信息等进行调查。计算乔木层、灌木层和草本层物种重要值, 运用《中国植被志》编研规范进行植被类型划分和命名, 描述群落物种组成和特征, 并提供10个植被型、22个群系、33个群丛共50个样方的原始数据, 包括森林样方43个, 灌丛样方5个, 草地样方1个, 沼泽样方1个。  相似文献   

11.
李伟  张翠萍  魏润鹏 《生态学报》2014,34(17):4957-4965
以位于广东省中西部的高要市桉树人工林林下植被群落为研究对象,对不同龄级林分物种多样性进行比较分析,采用典范对应分析(CCA)方法进行排序并通过相关分析,对物种分布和多样性与土壤因子的关系进行了研究。结果表明,每龄级24块样地充足,从第9块样地开始不同龄级的物种数目出现一定程度的差异。桉树林分样地中共有136种植物,隶属54科107属,灌木层的种类最多,但以草本层物种为优势种。不同龄级林分之间物种多样性差异不显著,但1—2年生林分低于2—4年生和5—6年生两个龄级;3—4年生的Shannon指数、Simpson指数和丰富度最高。对植被物种的分布,土壤中有机质、全磷、全钾和容重的影响明显,pH值也有一定程度作用,而对物种多样性,pH值和全氮是最为稳定的影响因子。  相似文献   

12.
Aims Soil plays an important role in the formation and heterogeneity of habitats and thus can cause changes in vegetation structure and plant diversity. The differentiation between Cerrado/savanna and forest is well known, but the relationship between soil and habitats from savannic or forest formations still needs to be better understood, particularly in tropical ecotonal areas. We studied the association between attributes of plant communities, namely structure and diversity, and physicochemical characteristics of soils in the Caatinga domain at the transition to Cerrado in Brazil.Methods Chemical and physical analyses of soils were performed in samples of 38 plots from savannic formations and 30 plots from forest formations. Vegetation was characterized floristically and structurally in all plots, five habitats being assessed in each plant formation. Soil features and vegetation parameters were highly distinct among the different habitats.Important findings In general, forest habitats were more nutrient rich than savannic formation. Furthermore, soil variables showed effects both on vegetation structure and on its species diversity, more pronouncedly in the savannic formations. Habitats were structurally distinct, and diversity differed between savannic and forest communities; however, a higher differentiation occurred when the savannic formation habitats were compared among them. Although plant diversity did not differ among forest formation habitats, soil attributes showed a close relationship with edaphic factors and can contribute for similar vegetation. The soil–vegetation relationship in highly diverse ecotonal landscapes is important from the conservation biology point of view and aid in the execution of proactive plans for the maintenance of biodiversity. Thus, we noticed that diversity and soil behaves distinctly between savannic and forest communities.  相似文献   

13.
Parthenium hysterophorus (Asteraceae) is a noxious plant that is considered one of the most invasive species in the world. We studied changes in the composition of plant species and soil properties related to the invasion of P. hysterophorus in three grassland communities of central Nepal. We collected vegetation and soil data along transects that were established in densely invaded to non-invaded areas within homogenous grassland stands. We found significant differences between invaded, transitional and non-invaded plots in species composition and soil properties. There were fewer species in non-invaded than transitional and invaded plots. By P. hysterophorus invasion both native and non-native species were supported or replaced, respectively. The concentrations of soil nitrogen and organic matter were significantly higher in transitional and invaded plots than in non-invaded plots. Soil pH, phosphorus and potassium were highest in the invaded plots, lowest in the non-invaded and intermediate in the transitional plots. Due to changes in above-ground vegetation and below-ground soil nutrient contents, P. hysterophorus invasion is likely to have an overall negative effect on the functioning of the entire ecosystem. Therefore, management of noxious P. hysterophorus is necessary to prevent future problems.  相似文献   

14.
In intensively used landscapes, remnant grassland fragments are often restricted to places unsuitable for agricultural cultivation. Such refuges are the ancient burial mounds called “kurgans,” which are typical landscape elements of the Eurasian steppe and forest steppe zone. Due to their hill‐like shape, loose soil structure and undisturbed status kurgans provide proper habitats for burrowing mammals. Accordingly, grassland vegetation on kurgans is often exposed to bioturbation, which can influence the habitat structure and plant species pool. In our study, we explored the effect of fox burrows and landscape context on the habitat properties and vegetation composition of small landscape elements, using kurgans as model habitats. We surveyed the vegetation of fox burrows and that of the surrounding grassland on five kurgans situated in cleared landscapes surrounded by arable lands and five kurgans in complex landscapes surrounded by grazed grasslands. We recorded the percentage cover of vascular plants, the amount of litter, and soil moisture content in twelve 0.5 m × 0.5 m plots per kurgan, in a total of 120 plots. We found that foxes considerably transformed habitat conditions and created microhabitats by changing the soil nutrient availability and reducing total vegetation cover and litter. Several grassland specialist species, mostly grasses (Agropyron cristatum, Elymus hispidus, and Stipa capillata) established in the newly created microhabitats, although the cover of noxious species was also considerable. We found that landscape context influenced the sort of species which could establish on kurgans by affecting the available species pool and soil moisture. Our results revealed that foxes act as ecosystem engineers on kurgans by transforming abiotic and biotic conditions by burrowing. Their engineering activity maintains disturbance‐dependent components of dry grasslands and increases local environmental heterogeneity.  相似文献   

15.
《植物生态学报》2021,44(12):1296
长株潭城市群生态绿心地区地处南方红壤丘陵区的中心地带, 植被区划上属中亚热带常绿阔叶林北部植被亚地带。该区植被以次生林为主, 植被类型复杂多样, 在南方红壤丘陵区现状植被中具有典型代表性, 可为区域植被演替动态和植被恢复研究提供良好的平台。该研究采用统一、规范的方法设置了50个样方, 对区内主要植被类型的物种组成、数量特征、生境信息等进行调查。计算乔木层、灌木层和草本层物种重要值, 运用《中国植被志》编研规范进行植被类型划分和命名, 描述群落物种组成和特征, 并提供10个植被型、22个群系、33个群丛共50个样方的原始数据, 包括森林样方43个, 灌丛样方5个, 草地样方1个, 沼泽样方1个。  相似文献   

16.
Veer  M.A.C.  Kooijman  A.M. 《Plant and Soil》1997,192(1):119-128
The encroachment of tall grass species in open dune vegetation, as observed in the Dutch dry dune area, is considered unfavourable for nature conservation. The effects of grass-encroachment on the vegetation and the availability of light and its relation to nutrients were investigated through a comparative study of grass-dominated and open dune grassland plots at ten locations along the Dutch coast.Grass-dominated plots have a low species diversity and number of species, especially of mosses and lichens. This is associated with a high biomass and a low availability of light at soil surface. In addition, nutrient availability seems to be important. Root biomass and the amounts of both ectorganic and endorganic matter are significantly higher in grass-dominated plots, which may account for the higher nutrient uptake in the vegetation.It is likely that a grass-dominated system can maintain and consolidate itself because of the better competition for light and nutrients. The relevance of these results for restoration management is briefly discussed.  相似文献   

17.
Abstract. Soil seed bank and floristic diversity were studied in a forest of Quercus suber, a forest of Quercus canariensis and a grassland, forming a vegetation mosaic in Los Alcornocales Natural Park, southern Spain. The soil seed bank was estimated by the germination technique. In each community patch, diversity, woody species cover and herbaceous species frequency was measured. Three biodiversity components – species richness, endemism and taxonomic singularity – were considered in the vegetation and the seed bank. Forest patches had a soil seed bank of ca. 11 200–14 100 seed.m?2 and their composition had low resemblance to (epigeal) vegetation. The grassland patch had a more dense seed bank (ca. 31 800 seed.m?2) and a higher index of similarity with vegetation, compared with the forests nearby. The complete forest diversity was 71–78 species on 0.1 ha, including 12–15 species found only in the seed bank; the grassland species richness was higher (113 species on 0.1 ha). We discuss the role of soil seed banks in the vegetation dynamics and in the complete plant biodiversity of the mosaic landscape studied.  相似文献   

18.
内蒙古高原温带稀树草原生态系统特征与成因   总被引:4,自引:0,他引:4  
内蒙古高原分布的温带榆树稀树草原生态系统在中国乃至世界上都是一种特殊的生态系统,对于它的研究可加深对植被分布规律的理解,且有利于该系统的保护。本文分析了该生态系统的地理分布、气候特点、土壤状况、物种组成、群落结构及天然更新状况等,比较了草原、森林和稀树草原3个生态系统的特征,提出了在内蒙古高原分布的温带榆树稀树草原生态系统是在独特的气候、土壤和地形条件下形成的经度(水分梯度)地带性顶极植被,决定其存在的最关键因素首先是降水量和土壤的水分条件,其次才是沙质土壤。这种生态系统既不是草原,又不是森林,而是介于落叶阔叶林和草原之间的一种生态系统类型。在此纬度带上,从东到西分布的经度地带性植被谱应为:温带森林、温带稀树草原、典型草原、荒漠草原等。在同一纬度带上,沙质土壤的基质并不完全被稀树草原生态系统所覆盖,还有沙漠等生态系统类型。建议《中国植被》增加一个新的植被类型,温带稀树草原。  相似文献   

19.
The effects of vegetation types and environmental factors on carabid beetle (Coleoptera: Carabidae) communities were studied. Carabid beetles were collected using pitfall traps (total 2844 trapping days) and seven microenvironmental factors were measured in four vegetation types: grassland, natural evergreen coniferous forest (Pinus densiflora), deciduous broad-leaved natural forest (Quercus crispula, Betula platyphylla, Alnus japonica, or Fagus crenata), and deciduous coniferous plantation (Larix kaempferi) in cool temperate Japan. These four vegetation types provided a novel comparison between natural forests and plantations because the vast majority of related studies have investigated only deciduous broad-leaved natural forests and evergreen coniferous plantations. PERMANOVA indicated that vegetation types affected carabid community composition. Ordination plots showed that community composition differed greatly between grassland and forest vegetation types, but that community composition in the plantation forest overlapped with that of natural forest types. Characteristics differentiating the grassland included a high proportion of winged species and a low mean carabid body weight. Among the examined environmental factors, litter depth, soil water content, and depth of the soil A-horizon had large effects on carabid communities. These results suggest that the effect of afforestation on carabid communities in cool temperate Japan might be insignificant compared with the effects of cover types (deciduous vs. evergreen) and microenvironmental factors.  相似文献   

20.
Defining the reference system for restoration projects in regions characterized by complex vegetation mosaics is challenging. Here we use the Cerrado region of Brazil as an example of the importance of clearly defining multiple natural and anthropogenically altered states in grassland‐savanna‐forest mosaics. We define three main, natural vegetation types–grassland, savanna, and scleromorphic (cerradão) forest–to (1) distinguish between original and degraded states and (2) set appropriate targets for and guide restoration. We contend that the differences in Cerrado vegetation composition originally were driven by soil conditions and secondarily by fire frequency and precipitation patterns that differ from the core to the edge of the Cerrado region. Grasslands are found on the shallowest, least fertile soils and/or in waterlogged soils; scleromorphic forests are generally located on deeper, more fertile soils; and savannas occupy an intermediate position. In recent decades, this biophysical template has been overlain by a range of human land‐use intensities that strongly affect resilience, resulting in alternative anthropogenic states. For example, areas that were originally scleromorphic forest are likely to regenerate naturally following low‐ or medium‐intensity land use due to extensive resprouting of woody plants, whereas grassland restoration requires reintroduction of grass and forb species that do not tolerate soil disturbance and exotic grass competition. Planting trees into historic grasslands results in inappropriate restoration targets and often restoration failure. Correctly identifying original vegetation types is critical to most effectively allocate scarce restoration funding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号