首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the effects of peptide binding on the (15)N relaxation rates and chemical shifts of the C-SH3 of Sem-5. (15)N spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)), and ((1)H)-(15)N NOE were obtained from heteronuclear 2D NMR experiments. These parameters were then analyzed using the Lipari-Szabo model free formalism to obtain parameters that describe the internal motions of the protein. High-order parameters (S(2) > 0.8) are found in elements of regular secondary structure, whereas some residues in the loop regions show relatively low-order parameters, notably the RT loop. Peptide binding is characterized by a significant decrease in the (15)N relaxation in the RT loop. Concomitant with the change in dynamics is a cooperative change in chemical shifts. The agreement between the binding constants calculated from chemical shift differences and that obtained from ITC indicates that the binding of Sem-5 C-SH3 to its putative peptide ligand is coupled to a cooperative conformational change in which a portion of the binding site undergoes a significant reduction in conformational heterogeneity.  相似文献   

2.
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.  相似文献   

3.
Yushmanov VE  Xu Y  Tang P 《Biochemistry》2003,42(44):13058-13065
Structure and backbone dynamics of a selectively [(15)N]Leu-labeled 28-residue segment of the extended second transmembrane domain (TM2e) of the human neuronal nicotinic acetylcholine receptor (nAChR) beta(2) subunit were studied by (1)H and (15)N solution-state NMR in dodecylphosphocholine micelles. The TM2e structure was determined on the basis of the nuclear Overhauser effects (NOEs) and the hydrogen bond restraints, which were inferred from the presence of H(alpha)(i)-H(N)(i+3), H(alpha)(i)-H(beta)(i+3), and H(alpha)(i)-H(N)(i+4) NOE connectivity and from the slow amide hydrogen exchange with D(2)O. The TM2e structure of the nAChR beta(2) subunit contains a helical region between T4 and K22. Backbone dynamics were calculated using the model-free approach based on the (15)N relaxation rate constants, R(1) and R(2), and on the (15)N-[(1)H] NOE. The data acquired at 9.4 and 14.1 T and calculations using different dynamic models demonstrated no conformational exchange and internal motions on the nanosecond time scale. The global tumbling time of TM2e in micelles was 14.4 +/- 0.2 ns; the NOE values were greater than 0.63 at 9.4 T, and the order parameter, S(2), was 0.83-0.96 for all (15)N-labeled leucine residues, suggesting a restricted internal motion. This is the first report of NMR structure and backbone dynamics of the second transmembrane domain of the human nAChR beta(2) subunit in a membrane-mimetic environment, providing the basis for subsequent studies of subunit interactions in the transmembrane domain complex of the neuronal nAChR.  相似文献   

4.
SH2 domains are protein modules which bind tyrosine phosphorylated sequences in many signaling pathways. These domains contain two regions with specialized functions: residues in one region form a deep pocket into which the phosphotyrosine of the target inserts, while the other region contains the so-called "specificity determining residues" which interact with the three residues C-terminal to the phosphotyrosine in the target. Here, titration calorimetry and site-directed mutagenesis have been used to probe the importance of eight specificity determining residues of the SH2 domain of the Src kinase involved in contacts with its tyrosine phosphorylated consensus peptide target (sequence pYEEI where pY indicates a phosphotyrosine). Mutating six of these eight residues to Ala individually, resulted in a threefold or less loss in binding affinity; hence the majority of the residues in the specificity determining region are by themselves of minimal importance for binding. Two residues were found to have significant effects on binding: Tyr betaD5 and Lys betaD3. Tyr betaD5 was the most crucial residue as evidenced by the 30-fold loss in affinity when Tyr betaD5 is mutated to Ile. However, while this mutation eliminated the specificity of the Src SH2 domain for the pYEEI peptide sequence, it was not sufficient to switch the specificity of the Src SH2 domain to that of a related SH2 domain which has an Ile at the betaD5 position. Mutation of Lys betaD3 to an Ala residue resulted in a modest reduction in binding affinity (sevenfold). It is interesting that this mutation resulted in a change of specificity affecting the selection of the +1 position residue C-terminal to the phosphotyrosine. Except for the Lys betaD3-+1 Glu interaction which is significantly coupled, only weak energetic coupling was observed across the binding interface, as assessed using double mutant cycles. The results of this study suggest that interactions involving the specificity determining region of SH2 domains may be insufficient by themselves to target single SH2 domains to particular phosphorylated sites.  相似文献   

5.
The binding properties of Src homology-2 (SH2) domains to phosphotyrosine (pY)-containing peptides have been studied in recent years with the elucidation of a large number of crystal and solution structures. Taken together, these structures suggest a general mode of binding of pY-containing peptides, explain the specificities of different SH2 domains, and may be used to design inhibitors of pY binding by SH2 domain-containing proteins. We now report the crystal structure to 1.8 A resolution of the C-terminal SH2 domain (C-SH2) of the P85alpha regulatory subunit of phosphoinositide 3-kinase (PI3 K). Surprisingly, the carboxylate group of Asp2 from a neighbouring molecule occupies the phosphotyrosine binding site and interacts with Arg18 (alphaA2) and Arg36 (betaB5), in a similar manner to the phosphotyrosine-protein interactions seen in structures of other SH2 domains complexed with pY peptides. It is the first example of a non-phosphate-containing, non-aromatic mimetic of phosphotyrosine binding to SH2 domains, and this could have implications for the design of substrate analogues and inhibitors. Overall, the crystal structure closely resembles the solution structure, but a number of loops which demonstrate mobility in solution are well defined by the crystal packing. C-SH2 has adopted a binding conformation reminiscent of the ligand bound N-terminal SH2 domain of PI3K, apparently induced by the substrate mimicking of a neighbouring molecule in the crystal.  相似文献   

6.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

7.
8.
We examined the internal mobility of the estrogen receptor DNA-binding domain (ER DBD) using NMR15N relaxation measurements and compared it to that of the glucocorticoid receptor DNA-binding domain (GR DBD). The studied protein fragments consist of residues Arg183-His267 of the human ER and residues Lys438-Gln520 of the rat GR. The15N longitudinal (R1) and transverse (R2) relaxation rates and steady state {1H}-15N nuclear Overhauser enhancements (NOEs) were measured at 30 degrees C at1H NMR frequencies of 500 and 600 MHz. The NOE versus sequence profile and calculated order parameters for ER DBD backbone motions indicate enhanced internal dynamics on pico- to nanosecond time-scales in two regions of the core DBD. These are the extended strand which links the DNA recognition helix to the second zinc domain and the larger loop region of the second zinc domain. The mobility of the corresponding regions of the GR DBD, in particular that of the second zinc domain, is more limited. In addition, we find large differences between the ER and GR DBDs in the extent of conformational exchange mobility on micro- to millisecond time-scales. Based on measurements of R2as a function of the15N refocusing (CPMG) delay and quantitative (Lipari-Szabo-type) analysis, we conclude that conformational exchange occurs in the loop of the first zinc domain and throughout most of the second zinc domain of the ER DBD. The conformational exchange dynamics in GR DBD is less extensive and localized to two sites in the second zinc domain. The different dynamical features seen in the two proteins is consistent with previous studies of the free state structures in which the second zinc domain in the ER DBD was concluded to be disordered whereas the corresponding region of the GR DBD adopts a stable fold. Moreover, the regions of the ER DBD that undergo conformational dynamics on the micro- to millisecond time-scales in the free state are involved in intermolecular protein-DNA and protein-protein interactions in the dimeric bound state. Based on the present data and the previously published dynamical and DNA binding properties of a GR DBD triple mutant which recognize an ER binding site on DNA, we argue that the free state dynamical properties of the nuclear receptor DBDs is an important element in molecular recognition upon DNA binding.  相似文献   

9.
Song XJ  Simplaceanu V  Ho NT  Ho C 《Biochemistry》2008,47(17):4907-4915
The present study reports distinct dynamic consequences for the T- and R-states of human normal adult hemoglobin (Hb A) due to the binding of a heterotropic allosteric effector, inositol hexaphosphate (IHP). A nuclear magnetic resonance (NMR) technique based on modified transverse relaxation optimized spectroscopy (TROSY) has been used to investigate the effect of conformational exchange of Hb A in both deoxy and CO forms, in the absence and presence of IHP, at 14.1 and 21.1 T, and at 37 degrees C. Our results show that the majority of the polypeptide backbone amino acid residues of deoxy- and carbonmonoxy-forms of Hb A in the absence of IHP is not mobile on the micros-ms time scale, with the exception of several amino acid residues, that is, beta109Val and beta132Lys in deoxy-Hb A, and alpha40Lys in HbCO A. The mobility of alpha40Lys in HbCO A can be explained by the crystallographic data showing that the H-bond between alpha40Lys and beta146His in deoxy-Hb A is absent in HbCO A. However, the conformational exchange of beta109Val, which is located in the intradimer (alpha 1beta 1 or alpha 2beta 2) interface, is not consistent with the crystallographic observations that show rigid packing at this site. IHP binding appears to rigidify alpha40Lys in HbCO A, but does not significantly affect the flexibility of beta109Val in deoxy-Hb A. In the presence of IHP, several amino acid residues, especially those at the interdimer (alpha 1beta 2 or alpha 2beta 1) interface of HbCO A, exhibit significant conformational exchange. The affected residues include the proximal beta92His in the beta-heme pocket, as well as some other residues located in the flexible joint (betaC helix-alphaFG corner) and switch (alphaC helix-betaFG corner) regions that play an important role in the dimer-dimer rotation of Hb during the oxygenation process. These findings suggest that, upon IHP binding, HbCO A undergoes a conformational fluctuation near the R-state but biased toward the T-state, apparently along the trajectory of its allosteric transition, accompanied by structural fluctuations in the heme pocket of the beta-chain. In contrast, no significant perturbation of the dynamic features on the ms-micros time scale has been observed upon IHP binding to deoxy-Hb A. We propose that the allosteric effector-induced quaternary structural fluctuation may contribute to the reduced ligand affinity of ligated hemoglobin. Conformational exchange mapping of the beta-chain of HbCO A observed at 21.1 T shows significantly increased scatter in the chemical exchange contribution to the transverse relaxation rate ( R ex) values, relative to those at lower fields, due to the enhanced effect of the local chemical shift anisotropy (CSA) fluctuation. A spring-on-scissors model is proposed to interpret the dynamic phenomena induced by the heterotropic effector, IHP.  相似文献   

10.
11.
15N NMR relaxation data have been used to characterize the backbone dynamics of the human acidic fibroblast growth factor (hFGF-1) in its free and sucrose octasulfate (SOS)-bound states. (15)N longitudinal (R(1)), transverse (R(2)) relaxation rates and (1H)-(15)N steady-state nuclear Overhauser effects were obtained at 500 and 600 MHz (at 25 degrees C) for all resolved backbone amide groups using (1)H- detected two-dimensional NMR experiments. Relaxation data were fit to the extended model free dynamics for each NH group. The overall correlation time (tau(m)) for the free and SOS-bound forms were estimated to be 10.4 +/- 1.07 and 11.1 +/- 1.35 ns, respectively. Titration experiments with SOS reveals that the ligand binds specifically to the C-terminal domain of the protein in a 1:1 ratio. Binding of SOS to hFGF-1 is found to induce a subtle conformational change in the protein. Significant conformational exchange (R(ex)) is observed for several residues in the free form of the protein. However, in the SOS-bound form only three residues exhibit significant R(ex) values, suggesting that the dynamics on the micro- to millisecond time scale in the free form is coupled to the cis-trans-proline isomerization. hFGF-1 is a rigid molecule with an average generalized parameter (S(2)) value of 0.89 +/- 0.03. Upon binding to SOS, there is a marked decrease in the overall flexibility (S(2) = 0.94 +/- 0.02) of the hFGF-1 molecule. However, the segment comprising residues 103-111 shows increased flexibility in the presence of SOS. Significant correlation is found between residues that show high flexibility and the putative receptor binding sites on the protein.  相似文献   

12.
A heparin binding, cell adhesion promoting domain, termed peptide F-9, from the B1 chain of human laminin, residues 641 to 660, i.e. RYVVLPRPVCFEKGMNYTVR, has been investigated by 1H NMR (500 MHz) spectroscopy and CD spectropolarimetry. While small linear peptides in water solution normally exist in a number of fluctuating conformational states, CD data analysis of peptide F9 indicates the existence of some preferred average structural populations consisting of about 30% beta-sheet, 22% beta-turn, and 6% alpha-helix. NMR structural analysis supports this observation and indicates specific sequences of preferred structural populations. Evidence for these is indicated by the presence of dNN nuclear Overhauser effect (NOE) populations and attenuated or absent d alpha N NOEs at short mixing times (0.1 s), 3J alpha N coupling constants of 5 and 10 Hz, and chemical shifts significantly removed from random coil positions. The NH2-terminal VVL sequence primarily exists in an extended chain conformation by virtue of large d alpha N NOEs and 9-10 Hz 3J alpha N coupling constants. Residues C10-N16 have turn-like or helix character with a run of dNN and d beta N NOEs and attenuated d alpha N NOEs. These midchain reversals include the lysine and asparagine residues proposed to be involved in heparin binding and N-glycosylation, respectively, to laminin peptide F-9.  相似文献   

13.
Ran X  Miao HH  Sheu FS  Yang D 《Biochemistry》2003,42(17):5143-5150
Neurogranin/RC3 is a neuron-specific, Ca(2+)-sensitive calmodulin binding protein and a specific protein kinase C substrate. Neurogranin may function to regulate calmodulin levels at specific sites in neurons through phosphorylation at serine residue within its IQ motif, oxidation outside the IQ motif, or changes in local cellular Ca(2+) concentration. To gain insight into the functional role of neurogranin in the regulation of calmodulin-dependent activities, we investigated the structure and dynamics of a full-length rat neurogranin protein with 78 amino acids using triple resonance NMR techniques. In the absence of calmodulin or PKC, neurogranin exists in an unfolded form as evidenced by high backbone mobility and the absence of long-range nuclear Overhauser effect (NOE). Analyses of the chemical shifts (13)C(alpha), (13)C(beta), and (1)H(alpha) reveal the presence of a local alpha-helical structure for the region between residues G25-A42. Three-bond (1)H(N)-(1)H(alpha) coupling constants support the finding that the sequence between residues G25 and A42 populates a non-native helical structure in the unfolded neurogranin. Homonuclear NOE results are consistent with the conclusions drawn from chemical shifts and coupling constants. (15)N relaxation data indicate motional restrictions on a nanosecond time scale in the region from D15 to S48. Spectral densities and order parameters data further confirm that the unfolded neurogranin exists in conformation with residual secondary structures. The medium mobility of the nascent helical region may help to reduce the entropy loss when neurogranin binds to its targets, but the complex between neurogranin and calmodulin is not stable enough for structural determination by NMR. Calmodulin titration of neurogranin indicates that residues D15-G52 of neurogranin undergo significant structural changes upon binding to calmodulin.  相似文献   

14.
The N-terminal src-homology 2 domain of the p85 alpha subunit of phosphatidylinositol 3' kinase (SH2-N) binds specifically to phosphotyrosine-containing sequences. Notably, it recognizes phosphorylated Tyr 751 within the kinase insert of the cytoplasmic domain of the activated beta PDGF receptor. A titration of a synthetic 12-residue phosphopeptide (ESVDY*VPMLDMK) into a solution of the SH2-N domain was monitored using heteronuclear 2D and 3D NMR spectroscopy. 2D-(15N-1H) heteronuclear single-quantum correlation (HSQC) experiments were performed at each point of the titration to follow changes in both 15N and 1H chemical shifts in NH groups. When mapped onto the solution structure of the SH2-N domain, these changes indicate a peptide-binding surface on the protein. Line shape analysis of 1D profiles of individual (15N-1H)-HSQC peaks at each point of the titration suggests a kinetic exchange model involving at least 2 steps. To characterize changes in the internal dynamics of the domain, the magnitude of the (15N-1H) heteronuclear NOE for the backbone amide of each residue was determined for the SH2-N domain with and without bound peptide. These data indicate that, on a nanosecond timescale, there is no significant change in the mobility of either loops or regions of secondary structure. A mode of peptide binding that involves little conformational change except in the residues directly involved in the 2 binding pockets of the p85 alpha SH2-N domain is suggested by this study.  相似文献   

15.
Günther U  Mittag T  Schaffhausen B 《Biochemistry》2002,41(39):11658-11669
Few techniques for probing the role of individual amino acids in interactions of a protein with ligands are available. Chemical shift perturbations in NMR spectra provide qualitative information about the response of individual amino acids of a protein to its interactions with ligands. Line shapes derived from (15)N-HSQC spectra recorded for different steps of a ligand titration yield both kinetic constants and insight into mechanisms by which the ligand binds. Here we have analyzed line shapes for 37 signals of amino acids of the N-terminal src homology 2 domain (N-SH2) of the 85 kDa subunit of phosphatidylinositol 3-kinase (PI3-K) upon binding of phosphotyrosine (ptyr)-containing peptides. Kinetic rates at individual amino acids of the SH2 varied throughout the structure. For a subset of SH2 residues, the fine structure of the NMR line shapes indicated slow motions induced by the presence of small amounts of the ligand. These complex line shapes require one or more additional conformational states on the kinetic pathway. Modeling of the observed ligand interactions suggests a quasi-allosteric initial binding step. N-SH2 mutants with altered ligand affinity or specificity were also examined. Analysis of their line shapes revealed three distinct classes of mutants with different kinetic behaviors.  相似文献   

16.
Membrane-anchored adaptor proteins FRS2alpha/beta (also known as SNT-1/2) mediate signaling of fibroblast growth factor receptors (FGFRs) and neurotrophin receptors (TRKs) through their N-terminal phosphotyrosine binding (PTB) domains. The FRS2 PTB domain recognizes tyrosine-phosphorylated TRKs at an NPXpY (where pY is phosphotyrosine) motif, whereas its constitutive association with FGFR involves a receptor juxtamembrane region lacking Tyr and Asn residues. Here we show by isothermal titration calorimetry that the FRS2alpha PTB domain binding to peptides derived from TRKs or FGFR is thermodynamically different. TRK binding is largely enthalpy-driven, whereas the FGFR interaction is governed by a favorable entropic contribution to the free energy of binding. Furthermore, our NMR spectral analysis suggests that disruption of an unstructured region C-terminal to the PTB domain alters local conformation and dynamics of the residues at the ligand-binding site, and that structural disruption of the beta8-strand directly weakens the PTB domain association with the FGFR ligand. Together, our new findings support a molecular mechanism by which conformational dynamics of the FRS2alpha PTB domain dictates its association with either fibroblast growth factor or neurotrophin receptors in neuronal development.  相似文献   

17.
Hyperfine 1H NMR signals of the 2Fe-2S* vegetative ferredoxin from Anabaena 7120 have been studied by two-dimensional (2D) magnetization exchange spectroscopy. The rapid longitudinal relaxation rates of these signals required the use of very short nuclear Overhauser effect (NOE) mixing times (0.5-20 ms). The resulting pattern of NOE cross-relaxation peaks when combined with previous 1D NOE results [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271] led to elucidation of the carbon-bound proton spin systems from each of the four cysteines ligated to the 2Fe-2S* cluster in the reduced ferredoxin. Additional NOE cross peaks were observed that provide information about other amino acid residues that interact with the iron-sulfur cluster. NOE cross peaks were assigned tentatively to Leu27, Arg42, and Ala43 on the basis of the X-ray coordinates of oxidized Anabaena 7120 ferredoxin [Rypniewski, W.R., Breiter, D.R., Benning, M.M., Wesenberg, G., Oh, B.-H., Markley, J.L., Rayment, I., & Holden, H. M. (1991) Biochemistry 30, 4126-4131]. Three chemical exchange cross peaks were detected in magnetization exchange spectra of half-reduced ferredoxin and assigned to the 1H alpha protons of Cys49 and Cys79 [both of whose sulfur atoms are ligated to Fe(III)] and Arg42 (whose amide nitrogen is hydrogen-bonded to one of the inorganic sulfurs of the 2Fe-2S* cluster). The chemical exchange cross peaks provide a means of extending assignments in the spectrum of reduced ferredoxin to assignments in the spectrum of the oxidized protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Sharma AK  Ye L  Alper SL  Rigby AC 《The FEBS journal》2012,279(3):420-436
Enzymatic catalysis and protein signaling are dynamic processes that involve local and/or global conformational changes occurring across a broad range of time scales. (1) H-(15) N relaxation NMR provides a comprehensive understanding of protein backbone dynamics both in the apo (unliganded) and ligand-bound conformations, enabling both fast and slow internal motions of individual amino acid residues to be observed. We recently reported the structure and nucleotide binding properties of the sulfate transporter and anti-sigma factor antagonist (STAS) domain of Rv1739c, a SulP anion transporter protein of Mycobacterium tuberculosis. In the present study, we report (1) H-(15) N NMR backbone dynamics measurements [longitudinal (T(1) ), transverse (T(2) ) and steady-state ({(1) H}-(15) N) heteronuclear NOE] of the Rv1739c STAS domain, in the absence and presence of saturating concentrations of GTP and GDP. Analysis of measured relaxation data and estimated dynamic parameters indicated distinct features differentiating the binding of GTP and GDP to Rv1739c STAS. The 9.55 ns overall rotational correlation time of Rv1739c STAS increased to 10.48 ns in the presence of GTP, and to 13.25 ns in the presence of GDP, indicating significant nucleotide-induced conformational changes. These conformational changes were accompanied by slow time scale (μs to ms) motions in discrete regions of the protein, as reflected by guanine nucleotide-induced changes in relaxation parameters. The observed nucleotide-specific alterations in the relaxation properties of individual STAS residues reflect an increased molecular anisotropy and/or the emergence of conformational equilibria governing functional properties of the STAS domain.  相似文献   

19.
The backbone dynamics in the native state of apocytochrome b5 were studied using 15N nuclear magnetic spin relaxation measurements. The field (11.7 and 14.1 T) and temperature (10-25 degrees C) dependence of the relaxation parameters (R1, R2, and R1rho) and the 1H-15N NOE established that the protein undergoes multiple time scale internal motions related to the secondary structure. The relaxation data were analyzed with the reduced spectral density mapping approach and within the extended model-free framework. The apoprotein was confirmed to contain a disordered heme-binding loop of approximately 30 residues with dynamics on the sub-nanosecond time scale (0.6 < S2 < 0.7, 100 ps < taue < 500 ps). This loop is attached to a structured hydrophobic core, rigid on the picosecond time scale (S2 > 0.75, taue < 50 ps). The inability to fit the data for several residues with the model-free protocol revealed the presence of correlated motion. An exchange contribution was detected in the transverse relaxation rate (R2) of all residues. The differential temperature response of R2 along the backbone supported slower exchange rates for residues in the loop (tauex > 300 micros) than for the folded polypeptide chain (tauex < 150 micros). The distribution of the reduced spectral densities at the 1H and 15N frequencies followed the dynamic trend and predicted the slowing of the internal motions at 10 degrees C. Comparison of the dynamics with those of the holoprotein [Dangi, B., Sarma, S., Yan, C., Banville, D. L., and Guiles, R. D. (1998) Biochemistry 37, 8289-8302] demonstrated that binding of the heme alters the time scale of motions both in the heme-binding loop and in the structured hydrophobic core.  相似文献   

20.
Ligand-activated and tyrosine-phosphorylated ErbB3 receptor binds to the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase and initiates intracellular signaling. Here, we studied the interactions between the N- (N-SH2) and C- (C-SH2) terminal SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase and eight ErbB3 receptor-derived phosphotyrosyl peptides (P-peptides) by using molecular dynamics, free energy, and surface plasmon resonance (SPR) analyses. In SPR analysis, these P-peptides showed no binding to the C-SH2 domain, but P-peptides containing a phospho-YXXM or a non-phospho-YXXM motif did bind to the N-SH2 domain. The N-SH2 domain has two phosphotyrosine binding sites in its N- (N1) and C- (N2) terminal regions. Interestingly, we found that P-peptides of pY1180 and pY1241 favored to bind to the N2 site, although all other P-peptides showed favorable binding to the N1 site. Remarkably, two phosphotyrosines, pY1178 and pY1243, which are just 63 amino acids apart from the pY1241 and pY1180, respectively, showed favorable binding to the N1 site. These findings indicate a possibility that the pair of phosphotyrosines, pY1178-pY1241 or pY1243-pY1180, will fold into an appropriate configuration for binding to the N1 and N2 sites simultaneously. Our model structures of the cytoplasmic C-terminal domain of ErbB3 receptor also strongly supported the speculation. The calculated binding free energies between the N-SH2 domain and P-peptides showed excellent qualitative agreement with SPR data with a correlation coefficient of 0.91. The total electrostatic solvation energy between the N-SH2 domain and P-peptide was the dominant factor for its binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号