首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selective inhibition (SI) technique has been widely used to resolve fungal and bacterial biomass. By studying bacterial growth (leucine/thymidine incorporation) and respiration simultaneously, this study demonstrates that the inhibitors the SI technique is based on do not efficiently or specifically resolve fungal and bacterial contributions to respiration. At concentrations that completely inhibited bacterial growth, the bactericide streptomycin had no influence on the SI technique’s respiration measurement, and complete inhibition of bacterial growth using oxytetracycline resulted in marginal respiration reductions. The fungicides captan and benomyl severely inhibited non-target bacterial growth. Cycloheximide did not reduce bacterial growth at moderate concentrations, but the cycloheximide respiration reduction was no higher in a soil with more fungal biomass, casting doubt on its ability to discriminate fungal respiration contribution. Conclusions regarding bacteria and fungi based on the SI technique using these inhibitors are thus compromised. The inhibition of glucose-activated respiration by the bactericide bronopol appeared to correlate with bacterial growth inhibition, however. Bronopol, combined with growth-based techniques, could aid development of a new framework to resolve decomposer ecology in soil.  相似文献   

2.
揭示不同恢复阶段热带森林土壤细菌呼吸季节变化及其主控因素,对于探明土壤细菌呼吸对热带森林恢复的响应机制具有重要的科学意义。以西双版纳不同恢复阶段热带森林(白背桐群落、崖豆藤群落和高檐蒲桃群落)为研究对象,运用真菌呼吸抑制法及高通量宏基因组测序技术分别测定土壤细菌呼吸速率和细菌多样性,并采用回归分析及结构方程模型揭示热带森林恢复过程中土壤细菌多样性、pH、土壤碳氮组分变化对土壤细菌呼吸速率的影响特征。结果表明:1)不同恢复阶段热带森林土壤细菌呼吸速率表现为:高檐蒲桃群落((1.51±0.62)CO2 mg g-1 h-1)显著高于崖豆藤群落((1.16±0.56)CO2 mg g-1 h-1)和白背桐群落((0.82±0.60)CO2 mg g-1 h-1)(P<0.05)。2)不同恢复阶段土壤细菌呼吸速率呈显著的单峰型季节变化(P<0.05),最大值均出现在9月:高檐蒲桃群落((...  相似文献   

3.
Subsequent production of amylase is severely inhibited if barban [4-chloro-2-butynyl N-(3-chlorophenyl) carbamate] is added to embryo-free half seeds of barley within 4 to 5 hours after gibberellic acid treatment of these seeds. Thirty to 50 mg/L concentrations of barban are effective. Barban inhibition is non-competitive with respect to gibberellic acid. Addition of barban 7 hours or more after gibberellic acid treatment is almost without effect.The delay between gibberellic acid treatment and amylase formation tends to become shorter with more prolonged imbibition periods. Regardless of imbibition period, susceptibility to barban is lost within 7 hours after gibberellic acid treatment.Other herbicidally active phenylurethanes are also inhibitors, but none are as effective as barban. Phenethyl alcohol and 2 arylcarbamates can act as inhibitors.  相似文献   

4.
The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress.  相似文献   

5.
Effect of drying and rewetting on bacterial growth rates in soil   总被引:6,自引:0,他引:6  
The effect of soil moisture on bacterial growth was investigated, and the effects of rewetting were compared with glucose addition because both treatments increase substrate availability. Bacterial growth was estimated as thymidine and leucine incorporation, and was compared with respiration. Low growth rates were found in air-dried soil, increasing rapidly to high stable values in moist soils. Respiration and bacterial growth at different soil moisture contents were correlated. Rewetting air-dried soil resulted in a linear increase in bacterial growth with time, reaching the levels in moist soil (10 times higher) after about 7 h. Respiration rates increased within 1 h to a level >10 times higher than that in moist soil. After the initial flush, there was a gradual decrease in respiration rate, while bacterial growth increased to levels twice that of moist soil 24 h after rewetting, and decreased to levels similar to those in moist soil after 2 days. Adding glucose resulted in no positive effect on bacterial growth during the first 9 h, despite resulting in more than five times higher respiration. This indicated that the initial increase in bacterial growth after rewetting was not due to increased substrate availability.  相似文献   

6.
To improve understanding of the relationship between the diversity and function of the soil ecosystem, we investigated the effect of two different disturbances on soil bacterial communities—long-term exposure to the heavy metal mercury and transient exposure to the antibiotic tylosin. In the mercury-contaminated soil the diversity (Shannon index) was reduced as assessed from denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences from the soil community DNA and from colony morphology typing of the culturable bacterial population. However, analysis of the substrate utilization profiles did not reveal any differences in diversity. In the tylosin-treated soil, DGGE revealed a small difference in the diversity of 16S rDNA compared to the control soil, whereas analysis of the colony morphology typing or substrate utilization results did not reveal any differences in diversity. Soil function was also affected by mercury contamination. The lag time before soil respiration increased following addition of glucose or alfalfa substrate was longer in the mercury-contaminated soil than in the control soil. Moreover, it was markedly prolonged in mercury-contaminated soil subjected to heat treatment prior to substrate addition, thus indicating reduced resistance to a new disturbance in the mercury-contaminated soil as compared to the control soil. Tylosin treatment did not have any significant effect on any of the respiration parameters measured, either with or without prior heat treatment of the soil.  相似文献   

7.
In this study we compared indicators of Cd bioavailability (water extracts, Lakanen extracts, free ions) and ecotoxicity in forest soils with contrasting physico-chemical characteristics. Soil samples were treated with CdCl(2) solutions (0, 0.1, 1, 10 and 100 mM) and incubated for 30 days. Microbial activity indexes (acid phosphatase, beta-glucosidase, basal respiration) and changes in bacterial community structure using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting were investigated. The Cd concentrations measured ranged from 1% to 37% of the total additions in water extracts, to higher levels in Lakanen extracts. Effects of Cd were observed at bioavailable concentrations exceeding United Nations/European Economic Commission UN/ECE guidelines for total Cd in the soil solution. Basal respiration was the most affected index, while enzymatic activities showed variable responses to the Cd treatments. We also noticed that soils with pH higher than 6.7 and clay content higher than 50% showed inhibition of basal respiration but no marked shift in bacterial community structure. Soils with lower pH (pH <5.8) with less clay content (<50%) showed in addition strong changes in the bacterial community structure. Our results provide evidence for the importance of relating the effects of Cd on the soil communities to soil properties and to bioavailability.  相似文献   

8.
The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.  相似文献   

9.
Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta‐analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad‐leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30‐ to 100‐year‐old forests (53.3%) and ≥100‐year‐old forests (50.2%) both 1.5 times larger than ≤30‐year‐old forests (34.5%). Soil microbial biomass carbon and soil dissolved organic carbon increased by 21.0%‐33.6% and 60.3%‐87.7%, respectively, in response to natural and doubled litter inputs, while soil respiration increased linearly with corresponding increases in soil microbial biomass carbon and soil dissolved organic carbon. Natural and doubled litter inputs increased the total phospholipid fatty acid (PLFA) content by 6.6% and 19.7%, respectively, but decreased the fungal/bacterial PLFA ratio by 26.9% and 18.7%, respectively. Soil respiration also increased linearly with increases in total PLFA and decreased linearly with decreases in the fungal/bacterial PLFA ratio. The contribution of litter inputs to an increase in soil respiration showed a trend of total PLFA > fungal/bacterial PLFA ratio > soil dissolved organic carbon > soil microbial biomass carbon. Therefore, in addition to forest type and stand age, labile C availability and soil microorganisms are also important factors that influence soil respiration in response to litter inputs, with soil microorganisms being more important than labile C availability.  相似文献   

10.
Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g(-1) soil) to soils amended with and without (13) C-labeled plant residue. We measured CO(2) respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g(-1)) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g(-1)) had no impact on plant residue decomposition, while greater concentrations of C (>7.2 mg C g(-1)) reduced decomposition (-50%). Concurrently, high exudate concentrations (>3.6 mg C g(-1)) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (<3.6 mg C g(-1)) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.  相似文献   

11.
Plant-derived organic matter inputs are thought to be a key driver of soil bacterial community composition and associated soil processes. We sought to investigate the role of acid grassland vegetation on soil bacterial community structure by assessing bacterial diversity in combination with other soil variables in temporally and spatially distinct samples taken from a field-based plant removal experiment. Removal of aboveground vegetation resulted in reproducible differences in soil properties, soil respiration and bacterial diversity. Vegetated soils had significantly increased carbon and nitrogen concentrations and exhibited higher rates of respiration. Molecular analyses revealed that the soils were broadly dominated by Alphaproteobacterial and Acidobacterial lineages, with increased abundances of Alphaproteobacteria in vegetated soils and more Acidobacteria in bare soils. This field-based study contributes to a growing body of evidence documenting the effect of soil nutrient status on the relative abundances of dominant soil bacterial taxa, with Proteobacterial taxa dominating over Acidobacteria in soils exhibiting higher rates of C turnover. Furthermore, we highlight the role of aboveground vegetation in mediating this effect by demonstrating that plant removal can alter the relative abundances of dominant soil taxa with concomitant changes in soil CO2-C efflux.  相似文献   

12.
Changes in the relative metabolism of soil bacteria and fungi following contamination with diesel were assessed using a modified substrate-induced respiration (SIR) method including selective antibiotic inhibition. 14CO2 release from radiolabelled glucose was used as an indication of population activity. In a Sandy Gley Soil with no history of contamination, the population activity shifted from 38 ± 4% (bacterial): 62 ± 4% (fungal) to 73 ± 4% (bacterial): 27 ± 4% (fungal) after treatment with diesel.  相似文献   

13.
Exposure of root-knot nematode, Meloidogyne incognita to various concentrations (5-100%) of culture filtrate of Paenibacillus polymyxa GBR-1 under in vitro conditions significantly reduced egg hatch and caused substantial mortality of its juveniles. The increase in the exposure durations of juveniles to culture filtrate and its concentrations increased the mortality rate. Similarly, higher concentrations increased its inhibitory effect on egg hatch. In higher concentrations (25-100%) egg hatch was inhibited by 84-91% after 2 days of exposures as compared to control in sterile distilled water. Application of various concentrations of culture filtrate extract or bacterial suspension of P. polymyxa GBR-1 into potting soil infested with 2000 J2 of M. incognita, reduced the root galling and nematode populations and increased tomato plant growth and root-mass production compared with untreated control (P< or = 0.05). The beneficial effect of P. polymyxa GBR-1 into potted soil increased exponentially with the increase in dose concentrations. Root gall index was reduced from 4.8 to 1.4 and 1.8 when potting soil was treated with 10% concentrations of culture filtrate extract and bacterial suspension, respectively, compared with untreated control. Application of bacterial suspension of P. polymyxa GBR-1 into potted soil at 3 day pre-inoculation of nematode was the most effective followed by simultaneously and at 2 days post-inoculation; as root galling was reduced by 62.5%, 58.3% and 50.0%, respectively, compared with untreated control.  相似文献   

14.
The need to understand how forest management practices affect soil CO2 exchange with the atmosphere (soil respiration) has increased with the recognition of a likely feedback effect of climate warming on soil respiration rates. Previous research addressing the mechanisms driving soil respiration has yielded inconsistent and/or conflicting results. This study looked to alternative above-ground forest characteristics to help explain spatial variability in soil respiration in a 30-year-old Sierra Nevada pine plantation. Fire hazard mitigation is one of the predominant management goals in these and other western US forests. Therefore, this analysis examined how fuels treatments, including shredding of understory vegetation (mastication), prescribed fire, and a combination thereof, affected soil respiration and its relationship to environmental factors and post-fire tree injuries. Multiple regression models indicated that mastication had no significant impact on soil respiration, but the roles of soil temperature and forest floor depth (O horizons) in the models increased after the treatment. Burning reduced soil respiration by ∼14%, and increased its sensitivity to tree proximity and the exposure of bare mineral soil. Scorch height in burned stands was negatively correlated with soil respiration. Models incorporating only tree injury or tree proximity parameters explained between 63% and 91% of the variability in burned plantations. This work suggests that measures of above-ground forest features can increase understanding of management impacts on soil respiration, and the mechanisms by which these impacts occur. These results are especially applicable in Mediterranean climates, where moisture stress reduces the effectiveness of soil microclimate in explaining soil respiration.  相似文献   

15.
Summary Autoclaved or natural field soil amended with 0.1 to 5.0 per cent (W/W) of margosa cake, rice husk and sawdust with or without supplemental nitrogen were tested for lytic activity and bacterial numbers. Generally, non-amended autoclaved soil caused little or no lysis of mycelium ofF. oxysporum f. sp.udum; non-amended natural soil caused more lysis. Amendment of soil with margosa cake, rice husk or saw-dust with or without supplemental nitrogen greatly enhanced its lytic effect on the fungus. The degree of lysis depended on the dosage of amendment used and the stage of its decomposition in the soil. The extent of lysis increased as the bacterial population increased. Amongst bacteria,Bacillus subtilis was very common in most lytic zones.  相似文献   

16.
The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer.  相似文献   

17.
There is widespread use of chemical amendments to meet the demands for increased productivity in agriculture. Potentially toxic compounds, single or in mixtures, are added to the soil medium on a regular basis, while the ecotoxicological risk assessment procedures mainly follow a chemical by chemical approach. Picoxystrobin is a fungicide that has caused concern due to studies showing potentially detrimental effects to soil fauna (earthworms), while negative effects on soil microbial activities (nitrification, respiration) are shown to be transient. Potential mixture situations with nonylphenol, a chemical frequently occurring as a contaminant in sewage sludge used for land application, infer a need to explore whether these chemicals in mixture could alter the potential effects of picoxystrobin on the soil microflora. The main objective of this study was to assess the effects of picoxystrobin and nonylphenol, as single chemicals and mixtures, on soil microbial community structure and respiration activity in an agricultural sandy loam. Effects of the chemicals were assessed through measurements of soil microbial respiration activity and soil bacterial and fungal community structure fingerprints, together with a degradation study of the chemicals, through a 70 d incubation period. Picoxystrobin caused a decrease in the respiration activity, while 4-n-nonylphenol caused an increase in respiration activity concurring with a rapid degradation of the substance. Community structure fingerprints were also affected, but these results could not be directly interpreted in terms of positive or negative effects, and were indicated to be transient. Treatment with the chemicals in mixture caused less evident changes and indicated antagonistic effects between the chemicals in soil. In conclusion, the results imply that the application of the fungicide picoxystrobin and nonylphenol from sewage sludge application to agricultural soil in environmentally relevant concentrations, as single chemicals or in mixture, will not cause irreversible effects on soil microbial respiration and community structure.  相似文献   

18.
《植物生态学报》2017,41(12):1239
Aims Our objective was to determine the effects of changes in global pattern of precipitation on soil respiration and the controlling factors. Methods Data were collected from literature on precipitation manipulation experiments globally and a meta-analysis was conducted to synthesize the responses of soil respiration to changes in precipitation regimes. Important findings We found that an increased precipitation stimulated soil respiration while a decreased precipitation suppressed it. When changes in rainfall were normalized to the average treatment level (41% of the current annual precipitation), the level of increases in soil respiration with increased precipitation (49%) were higher than that of decreases with decreased precipitation (21%), showing an asymmetric responses of soil respiration to increases and decreases in precipitation. Soil moisture occurred as the most predominant factor driving the changes in soil respiration under altered precipitation. Changes in soil moisture affected soil respiration directly and indiscreetly by changing aboveground/belowground net primary productivity and microbial biomass carbon, which collectively contributed 98% of variations in soil respiration. In addition, the responses of soil respiration to altered precipitation varied with background temperature and precipitation. The sensitivity of soil respiration increased with local mean annual temperature when precipitation was reduced, while remaining unchanged when precipitation was increased. Meanwhile, the sensitivity of soil respiration to either increases or decreases in precipitation decreased with increasing local mean annual precipitation. Under future altered precipitation regimes, the sensitivity of soil respiration to changes in precipitation is likely dependent of local environment conditions.  相似文献   

19.
《植物生态学报》2017,41(11):1177
Aims Recent studies have shown that artificial addition of biochar is an effective way to mitigate atmospheric carbon dioxide concentrations. However, it is still unclear how biochar addition influences soil respiration in Phyllostachys edulis forests of subtropical China. Our objectives were to examine the effects of biochar addition on the dynamics of soil respiration, soil temperature, soil moisture, and the cumulative soil carbon emission, and to determine the relationships of soil respiration with soil temperature and moisture.Methods We conducted a two-year biochar addition experiment in a subtropical P. edulis forest from 2014.05 to 2016.04. The study site is located in the Miaoshanwu Nature Reserve in Fuyang district of Hangzhou, Zhejiang Province, in southern China. The biochar addition treatments included: control (CK, no biochar addition), low rate of biochar addition (LB, 5 t·hm-2), medium rate of biochar addition (MB, 10 t·hm-2), and high rate of biochar addition (HB, 20 t·hm-2). Soil respiration was measured by using a LI-8100 soil CO2 efflux system.Important findings Soil respiration was significantly reduced by biochar addition, and exhibited an apparent seasonal pattern, with the maximum occurring in June or July (except LB in one of the replicated stand) and the minimum in January or February. There were significant differences in soil respiration between the CK and the treatments. Annual mean soil respiration rate in the CK, LB, MB and HB were 3.32, 2.66, 3.04 and 3.24 μmol·m-2·s-1, respectively. Compared with CK, soil respiration rate was 2.33%-54.72% lower in the LB, 1.28%-44.21% lower in the MB, and 0.09%-39.22% lower in the HB. The soil moisture content was increased by 0.97%-75.58% in LB, 0.87%-48.18% in MB, and 0.68%-74.73% in HB, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature and a significant linear relationship with combination of soil temperature and moisture at the depth of 5 cm; no significant relationship was found between soil respiration and soil moisture alone. The temperature sensitivity (Q10) value was reduced in LB and HB. Annual accumulative soil carbon emission in the LB, MB and HB was reduced by 7.98%-35.09%, 1.48%-20.63%, and -4.71%-7.68%, respectively. Biochar addition significantly reduced soil carbon emission and soil temperature sensitivity, highlighting its role in mitigating climate change.  相似文献   

20.
Soil respiration is an important part of the global carbon (C) cycle and the largest component of C flux from terrestrial ecosystems to the atmosphere. Here, we investigated possible effects of photosynthetic substrate supply on soil respiration in a semiarid ecosystem. A field experiment combining water addition and shading (low and high shading) treatments was conducted to manipulate photosynthetic substrate supply in a temperate semiarid steppe in two growing seasons. Our result showed that water addition and/or low shading significantly increased net primary productivity (ecosystem‐level photosynthetic substrate supply) and soil respiration in both two growing seasons. However, the effects of high shading on net primary productivity and soil respiration depended on soil water condition, which were negative in wet year (2008) but positive in dry year (2009). On the diel timescale, soil respiration was out of phase with soil temperature and leaf net photosynthesis, but in phase with leaf sugar and starch contents (leaf‐level photosynthetic substrate production). The results indicated that photosynthetic substrate supply was an important factor in regulating soil respiration on both daily and seasonal timescales. Moreover, its effect on soil respiration increased with increasing water availability in this region. The predominant role of C assimilate supply on soil respiration indicates that the predicted positive influence of rising temperature on soil respiration will be simultaneously mediated by substrate supply and water availability in semiarid steppe ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号