首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During voluntary hyperventilation an increase in the lymphocyte and thrombocyte counts occurs, paralleled by an increase in plasma epinephrine and norepinephrine. All these changes are rapidly reversible after hyperventilation and are followed by an increase in the neutrophil granulocyte count. The pathophysiological mechanisms of these changes were investigated by comparison of the hyperventilation-induced changes of the blood picture in 11 normal, 9 splenectomized and 12 beta-blocked volunteers. Splenectomy did not affect the hyperventilation-induced mobilization of lymphocytes and neutrophils but totally suppressed the change in the thrombocyte count. beta-blockade by 80 mg propranolol did not suppress the hyperventilation-induced increase in neutrophils. It reduced the absolute increase of lymphocytes and thrombocytes by half, but it also increased the baseline counts of these cells. The study shows that hyperventilation mobilizes thrombocytes from the spleen but not from extralienal pools, and that lymphocytes and neutrophils are mobilized from extralienal pools. Whereas neutrophil mobilization is not suppressed by beta-blockade, the reduction of hyperventilation-induced mobilization of lymphocytes and thrombocytes may be due to a reduction in the size of the mobilizable cell pools, and therefore cannot be interpreted as a sure indication that adrenergic mechanisms are involved in their hyperventilation-induced mobilization.  相似文献   

3.
The mesothelial cells of the mouse omentum provide an in vivo model for the study of the mobilization of labile microvilli on the cell surface. These mesothelial cells are sparsely covered with microvilli and large pits 150--400 nm in diameter, termed vesiculated pits. On the unstimulated cell, the microvilli average 44/100 microns2 and pits, 30/100 microns 2 of surface and they are rapidly induced to increase in number by the intraperitoneal injection of isologous mouse serum. After 2 min, microvilli increase threefold, continue to sevenfold at 30 min, and decrease to fourfold at 90 min. Vesiculated pits increased with similar kinetics. Bovine serum albumin and gamma globulin also stimulate the microvilli and pits to form, but the response is a slow, gradual rise to five- or sixfold the normal value at 90 min. Evidence indicates that multiple factors, possibly including insulin and immunoglobulins, are involved in the effect of serum. The close physical and temporal relationship between microvilli and pits suggests that a correlation exists in their mobilization by the cell and it is hypothesized that microvilli function in the regulation of the cortical microfilament network in effecting this mobilization.  相似文献   

4.
Background aimsHematopoietic (HPC), mesenchymal (MPC) and/or endothelial (EPC) progenitor cells are being studied to repair the myocardium after acute or chronic ischemia. We examined marrow response to myocardial infarction (MI) and the ability of granulocyte–colony-stimulating factor (G-CSF) to enhance mobilization of HPC, MPC and EPC in peripheral blood (PB) and bone marrow (BM) of MI mice.MethodsWe induced MI in C57Bl/6 mice, while sham-operated (SO) animals were similarly operated on but without coronary artery ligation. Animals were treated with either saline or G-CSF, from day ?5 to day +5 after MI or from day 0 to day +5. Progenitor cell numbers in PB and BM were evaluated by fluorescence-activated cell sorting (FACS) analysis and cell culture.ResultsWhite blood cells (WBC) decreased in BM and increased in PB after MI; G-CSF amplified this effect in BM but not in PB. HPC numbers decreased in BM after MI, while HPC and granulocyte–macrophage colony-forming units (GM-CFU) increased in PB only after G-CSF treatment, and more prominently so in MI than in SO mice. MPC and fibroblast–colony-forming units (F-CFU) as well as EPC were mobilized into the PB after MI and further after G-CSF treatment. Plasma troponin T concentrations decreased after G-CSF treatment.ConclusionsBM is globally affected by acute MI, but not simple body injury, with intense mobilization of marrow MPC and EPC into the PB but inhibition of HPC. Progenitor cell entry into the PB may be paralleled by depletion of their BM pools. G-CSF is required for HPC mobilization and enhances MPC and EPC entry into the PB.  相似文献   

5.
Control of melanin synthesis and secretion by B16/C3 melanoma cells   总被引:2,自引:0,他引:2  
In culture, B16/C3 murine melanoma cells grown in the presence of serum undergo melanogenesis at a specific time after plating. At this time, melanin is synthesized intracellularly and then secreted into the extracellular culture fluid. We have found that melanin secretion is dependent on the presence of serum in the growth medium. When confluent cultures are deprived of serum, that is, refed with serum-free medium, cells remain viable but do not undergo melanogenesis. Addition of serum-free medium supplemented with either melanocyte-stimulating hormone (MSH) or dibutyryl cAMP induced melanogenesis in these cells but did not result in melanin secretion. Furthermore, when B16/C3 cells are grown in serum-free, hormone-supplemented medium, they also undergo melanogenesis but fail to release melanin. The addition of serum, however, to B16/C3 cells induced to undergo melanogenesis with MSH, dibutyryl cAMP, or hormone-supplemented medium promotes melanin secretion. Fractionation studies hence revealed that serum contains specific factors capable of inducing melanin secretion. These results demonstrate that factors that regulate melanin synthesis are distinct from those that induce cells to release melanin into their extracellular environment. Furthermore, the ability to induce melanogenesis with single factors will permit us to study the precise sequence of events leading to differentiation in B16/C3 cells under chemically defined conditions.  相似文献   

6.
Bone marrow cells, cultured in L-929 CSF, consist of cells of granulocyte and macrophage lineages. Cells of the granulocyte lineage are known to be cytotoxic for Candida albicans. In this paper we report that macrophage precursor cells also display strong cell-mediated cytotoxicity against the yeast form of the dimorphic fungus C. albicans. The macrophage precursors responsible for this activity are nylon wool-nonadherent, nonphagocytic cells and lack asialo GM1 surface antigen. A purified population of macrophage precursors (greater than 95%) was obtained by means of Percoll density centrifugation. The interaction of these purified effectors with the target yeast cells was analyzed at a single cell level, and their activity was compared with that displayed by cells of the granulocytic series derived from the same bone marrow culture. Macrophage precursor cells proved to be more effective in binding the target cells and showed the same killing ability as the granulocytes: macrophage precursors were not damaged by contact with the target, in contrast to that which happened with granulocytes. In a long-term colony-forming unit assay, in fact, granulocytic cells showed a decrease over time in their ability to inhibit the growth of C. albicans, probably due to cell damage and death after the interaction with the target. In contrast, no loss of activity was observed with the macrophage precursor fraction. The same macrophage precursor cells also proved able to exert good natural killer activity against YAC-1 lymphoma cells, but not against P815 mastocytoma cells, as reported previously. The macrophage precursor cells, when cultivated in vitro to mature macrophages, lost completely their natural cytotoxicity against C. albicans and YAC-1 cells. The implications of these findings, as well as the possible role in vivo of such a precursor cell population during an infection, are discussed.  相似文献   

7.
Mitogenic stimulation of quiescent human fibroblasts (HSWP) with serum or a mixture of growth factors (consisting of vasopressin, bradykinin, EGF, and insulin) stimulates the release of inositol phosphates, mobilization of intracellular Ca, activation of Na/H exchange and subsequent incorporation of [3H]-thymidine. We have determined previously that pretreatment with the tumor-promoting phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate (TPA) inhibits mitogen-stimulated Na influx in HSWP cells. We report herein that TPA pretreatment also substantially inhibits the mitogen-stimulated release of inositol phosphates in HSWP cells. Half maximal inhibition of mitogen-stimulated inositol phosphate release occurs at 1-2 nM TPA. Treatment of cells with TPA alone has no effect on inositol phosphate release. The effect of TPA pretreatment on inositol phosphate release induced by individual growth factors has also been determined. Orthovanadate, reported by Cassel et al. (1984) to increase Na/H exchange in A431 cells, has been demonstrated to stimulate both Na influx and inositol phosphate release in HSWP cells. TPA pretreatment also inhibits both orthovanadate-stimulated inositol phosphate release and Na influx. In addition, orthovanadate was determined to increase intracellular Ca activity by mobilizing intracellular calcium stores, as determined with the fluorescent intracellular calcium probe fura-2. TPA pretreatment blocks orthovanadate stimulated mobilization of intracellular Ca stores. It appears clear that in HSWP cells pretreatment of cells with phorbol ester is capable of artificially desensitizing the early cellular responses to mitogenic stimuli (growth factors, orthovanadate) by blocking the signal transduction mechanism involved at a point prior to the release of inositol phosphates. We hypothesize that in HSWP cells the normal desensitization of both inositol phosphate release and Na/H exchange is mediated via activation of protein kinase C subsequent to the stimulus-mediated activation of phospholipase C and release of protein kinase C activator diacylglycerol. However it is interesting to note that TPA-mediated inhibition of these early responses in HSWP cells does not inhibit their ability to be stimulated to incorporate [3H]-thymidine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A number of growth factors acting on hematopoietic stem cells have now been purified and characterized. These include erythropoietin, granulocyte-macrophage colony-stimulating activity (GM-CSA), granulocyte colony-stimulating activity and colony-stimulating factor-1 (CSF-1). Factors which act in concert with these defined factors and appear to act relatively early in the hematopoietic stem cell lineage are currently under study. Interleukin 3 appears to have both the characteristics of a differentiating hormone and the ability to generate proliferation of relatively early stem cells. Interleukin 3 acts in concert with at least CSF-1 and erythropoietin to enhance their effect on stem cell proliferation and differentiation. A new class of hematopoietic growth factor activities termed synergizing activities also exist. These activities appear to have no intrinsic capacity to stimulate hematopoietic colony formation by themselves but enhance the effects of other differentiating hormones such as GM-CSA and CSF-1. Activities which appear to represent synergizing activities have now been found to evolve from a human bladder carcinoma line, a cell line derived from murine marrow adherent cells and normal murine marrow and thymic cells. These activities may act on very primitive hematopoietic progenitors to allow them to express receptors to various differentiating hormones or alternatively they may act as commitment factors in a commitment-progression model of stem cell regulation.  相似文献   

9.
Human chemokine-like factor 1 (CKLF1) exhibits chemotactic effects on leukocytes. A previous study demonstrated that CKLF1 is a functional ligand for human CC chemokine receptor 4 (CCR4). In this study, N-terminal amino acid sequencing of secreted CKLF1 protein showed that it contains at least two peptides, C27 and C19. To examine whether C27 or C19 play a role via CCR4, C27 and C19 were chemically synthesized and analyzed by chemotaxis, calcium mobilization, and receptor internalization assays in CCR4-tranfected HEK293 cells or Hut78 cells. The chemotaxis assay showed that C27 could induce chemotaxis to CCR4-transfected HEK293 cells or Hut78 cells while C19 had weaker chemotactic activity, especially in Hut78 cells. C27- or C19-induced chemotaxis was abolished by pertussis toxin, suggesting the involvement of a Gi/o pathway. C27- or C19-induced chemotaxis was also inhibited by an antagonist of CCR4 that show good binding potency, excellent chemotaxis inhibitory activity and selectivity toward CCR4, suggesting that their chemotactic activity specifically involved CCR4. The chemotactic response of CCR4-tranfected HEK293 cells to C27 or C19 was markedly inhibited by preincubation with TARC/CCL17. TARC/CCL17 effectively desensitized the calcium mobilization induced by C27 or C19. Similarly, both of C27 or C19 also desensitized the calcium mobilization and chemotaxis of CCR4-tranfected HEK293 cells in response to TARC/CCL17, suggesting that they might interact with a common receptor. Both C27- and C19-induced clear internalization of CCR4-EGFP. These results confirm that the secreted peptides of CKLF1, C27 and C19, have functional activation via CCR4.  相似文献   

10.
Low expression of the CD3zeta chain has been reported in patients with cancer and it has been suggested that tumor-derived factors are involved in its downregulation. The expression of CD3zeta chain was measured in T-cell lines from patients with gastric adenocarcinoma and healthy volunteers and grown in vitro for several months and, hence, in the absence of any tumor-derived factors. T-cell lines of mucosal origin were obtained by Herpesvirus saimiri transformation from gastric cancer patients. The expression of CD3zeta and CD3epsilon was measured by flow cytometry and Western-blot analysis. Calcium mobilization and apoptosis rate were also measured. The levels of CD3zeta, but not CD3epsilon, chain on the cell surface were significantly reduced in T-cell lines derived from patients with gastric cancer when cultured in the absence of IL-2. Western-blot analysis of total cell extracts or lipid raft fractions confirmed this finding. Calcium mobilization, a measure of signal transduction, was reduced in T cell lines from patients with gastric cancer. We conclude that T cells from patients with cancer express lower levels of CD3zeta. This downregulation is not caused by a direct effect of tumor-derived factors but, rather, it appears to be inherent to the patient cells. The low CD3zeta expression would render T lymphocytes unable to control the growth of tumor cells.  相似文献   

11.
Anti-immunoglobulin antibodies (anti-Ig) can stimulate a majority of resting B cells via their receptor Ig. Evidence suggests that the signals generated after this ligand-receptor interaction may be transduced via hydrolysis of inositol phospholipids. In other systems, the ability of inositol phospholipid hydrolysis to link receptor-ligand interactions to subsequent activational events has been suggested to relate to the ability of metabolic intermediates of this hydrolytic process to facilitate activation of protein kinase C and mobilization of Ca+2. In this study, we investigated the importance of protein kinase C and Ca+2 mobilization in the signaling mechanism by which anti-Ig drives B cells to undergo G0 to G1 transition. Our results show that pharmacologic inhibition of either protein kinase C activity or channel-mediated Ca+2 influx completely abrogates the increase in RNA synthesis associated with B cell activation after stimulation by anti-Ig. This suggests that pathways leading to both protein kinase C activation and elevation of intracellular Ca+2 are critical for receptor Ig-mediated G0 to G1 transition. Furthermore, studies in which anti-Ig-induced signaling could be bypassed by directly facilitating Ca+2 mobilization and protein kinase C activation using Ca+2 ionophore and phorbol diester show that these events are sufficient to drive the majority of resting B cells into G1 in the absence of additional signaling from accessory cells or extra-cellular factors. However, like anti-Ig-induced stimulation, Ca+2 ionophore and phorbol diester are relatively inefficient in driving B cells that have entered G1 into S phase. We discuss the relevance of these results towards the transduction mechanism linking B cell membrane-associated Ig-generated signals with subsequent activation events.  相似文献   

12.
Modification of the amino terminus of regulated on activated normal T-cell expressed (RANTES) has been shown to have a significant effect on biological activity and produces proteins with antagonist properties. Two amino-terminally modified RANTES proteins, Met-RANTES and aminooxypentane-RANTES (AOP-RANTES), exhibit differential inhibitory properties on both monocyte and eosinophil chemotaxis. We have investigated their binding properties as well as their ability to activate the RANTES receptors CCR1, CCR3, and CCR5 in cell lines overexpressing these receptors. We show that Met-RANTES has weak activity in eliciting a calcium response in Chinese hamster ovary cells expressing CCR1, CCR3, and CCR5, whereas AOP-RANTES has full agonist activity on CCR5 but is less effective on CCR3 and CCR1. Their ability to induce chemotaxis of the murine pre-B lymphoma cell line, L1.2, transfected with the same receptors, consolidates these results. Monocytes have detectable mRNA for CCR1, CCR2, CCR3, CCR4, and CCR5, and they respond to the ligands for these receptors in chemotaxis but not always in calcium mobilization. AOP-RANTES does not induce calcium mobilization in circulating monocytes but is able to do so as these cells acquire the macrophage phenotype, which coincides with a concomitant up-regulation of CCR5. We have also tested the ability of both modified proteins to induce chemotaxis of freshly isolated monocytes and eosinophils. Cells from most donors do not respond, but occasionally cells from a particular donor do respond, particularly to AOP-RANTES. We therefore hypothesize that the occasional activity of AOP-RANTES to induce leukocyte chemotaxis is due to donor to donor variation of receptor expression.  相似文献   

13.
Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. Clostridium difficile toxin B, which glucosylates Rho, Rac, and Cdc42 and Clostridium sordellii lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FcepsilonRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca(2+) mobilization induced by FcepsilonRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca(2+). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca(2+) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating Clostridium botulinum C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca(2+) mobilization most likely by regulating the Ca(2+) influx through calcium release-activated calcium channels activated via FcepsilonRI receptor in RBL cells.  相似文献   

14.
Background aimsThe effect of granulocyte–colony-stimulating factor (G-CSF) and/or the cytokine fms-like thyrosin kinase 3 (Flt3) ligand on functional outcome and tissue regeneration was studied in a rat model of spinal cord injury (SCI).MethodsRats with a balloon-induced compression lesion were injected with G-CSF and/or Flt3 ligand to mobilize bone marrow cells. Behavioral tests (Basso-Beattie-Bresnahan and plantar test), blood counts, morphometric evaluation of the white and gray matter, and histology were performed 5 weeks after SCI.ResultsThe mobilization of bone marrow cells by G-CSF, Flt3 ligand and their combination improved the motor and sensory performance of rats with SCI, reduced glial scarring, increased axonal sprouting and spared white and gray matter in the lesion. The best results were obtained with a combination of G-CSF and Flt3. G-CSF alone or in combination with Flt3 ligand significantly increased the number of white blood cells, but not red blood cells or hemoglobin content, during and after the time–course of bone marrow stimulation. The combination of factors led to infiltration of the lesion by CD11b+ cells.ConclusionsThe observed improvement in behavioral and morphologic parameters and tissue regeneration in animals with SCI treated with a combination of both factors could be associated with a prolonged time–course of mobilization of bone marrow cells. The intravenous administration of G-CSF and/or Flt3 ligand represents a safe and effective treatment modality for SCI.  相似文献   

15.
16.
1. Cell-free systems prepared from Krebs II ascites cells incubated at 45 degrees C have a much lower endogenous activity than those from cells incubated at 37 degrees C. The endogenous activity is mainly due to completion of polypeptide chains initiated in the intact cell. The low activity of the 45 degrees C system is due to a lesion in initiation in cells incubated at 45 degrees C. 2. Cell-free systems from cells incubated at 45 degrees C can translate efficiently poly (U) at 8 mM Mg2+. However, they initiate poorly on globin mRNA, indicating that these systems reflect the situation in the intact cell. 3. The lesion in globin mRNA translation in 45 degrees C systems can be overcome by addition of reticulocyte initiation factors. At saturation concentrations of factors, the response of a 45 degrees C system is restored to almost normal. 4. 45 degrees C systems from 40-S initiation complexes with methionyl tRNAfmet almost as efficiently as normal, but their ability for form 80-S complexes with globin mRNA is impaired, unless they are supplied with exogenous initiation factors.  相似文献   

17.
In a series of studies, we have reported that 1,25-dihydroxyvitamin D (3), a known stimulator of monocytic differentiation, primes bone marrow progenitor cells or promyelocytic HL-60 cells to the actions of several factors involved in both monocytic and granulocytic differentiation. In the present study, we have further examined the combinational effects of 1,25-dihydroxyvitamin D (3) and the other inducer of granulopoiesis, granulocyte colony-stimulating factor, on non-fractionated native murine bone-marrow cell culture. Over 6 days of treatment, human granulocyte colony-stimulating factor sustained cell viability, increased the size of small rounded non-adherent cells, and induced granulocytic differentiation, while 1,25-dihydroxyvitamin D (3) decreased cell viability, promoted the development of large adherent flattened cells, and upregulated some monocytic differentiation markers. Combining these two factors over 6 days synergistically upregulated phagocyte activity, membrane-bound interleukin-1alpha, NAD(P)H oxidase, monocytic Mac-1, and non-specific esterase. Similar effects were observed in successive treatment with granulocyte colony-stimulating factor followed by 1,25-dihydroxyvitamin D (3), but successive treatment in reverse order was somewhat less effective. No combinational treatment upregulated granulocytic lactate dehydrogenase, Gr-1, or chloroacetate esterase to as great an extent as was obtained with granulocyte colony-stimulating factor alone, indicating that granulocytic differentiation is attenuated by addition of 1,25-dihydroxyvitamin D (3). Therefore, in contrast to our previous data, the present findings suggest that granulocyte colony-stimulating factor synergistically augments 1,25-dihydroxyvitamin D (3)-induced monocytic differentiation in our murine bone-marrow cell cultures. Considering previously published data, we also suggest that these synergistic effects may be mainly due to the combination of two distinct effects such as the primary proliferative effects of granulocyte colony-stimulating factor on multipotent stem cells and the subsequent differentiative effects of 1,25-dihydroxyvitamin D (3) on proliferating cells.  相似文献   

18.
The definition of poor mobilizers is not clear in pediatric patients undergoing autologous peripheral blood hematopoietic progenitor cell (HPC) mobilization. Most studies conducted in children define those variables related to the collection of HPC after leukapheresis, but the information regarding exclusively the mobilization process is scarce. In our experience, most children (92.2%) reach the target CD34+ cell dose for autologous peripheral blood progenitor cell transplantation if CD34+ cell count was higher than 10/μL. No differences were observed between those with >20 CD34+ cells/μL and 11–20 CD34+ cells/μL. In this study, we analyzed the variables that influence CD34+ cell count; we found that prior use of radiotherapy was the main variable related to poor mobilization. Patients diagnosed with Ewing sarcoma, treated with radiotherapy and mobilized with standard doses of granulocyte colony-stimulating factor (G-CSF) were also at a high risk of mobilization failure. In these patients, we should consider mobilization with high dose G-CSF and be prepared with new mobilization agents to avoid delay on their course of chemotherapy.  相似文献   

19.
Differential regulation has been suggested for cellular cholesterol and phospholipid release mediated by apolipoprotein A-I (apoA-I)/ABCA1. We investigated various factors involved in cholesterol mobilization related to this pathway. ApoA-I induced a rapid decrease of the cellular cholesterol compartment that is in equilibrium with the ACAT-accessible pool in cells that generate cholesterol-rich HDL. Pharmacological and genetic inactivation of ACAT enhanced the apoA-I-mediated cholesterol release through upregulation of ABCA1 and through cholesterol enrichment in the HDL generated. Pharmacological activation of protein kinase C (PKC) also decreased the ACAT-accessible cholesterol pool, not only in the cells that produce cholesterol-rich HDL by apoA-I (i.e., human fibroblast WI-38 cells) but also in the cells that generate cholesterol-poor HDL (mouse fibroblast L929 cells). In L929 cells, the PKC activation caused an increase in apoA-I-mediated cholesterol release without detectable change in phospholipid release and in ABCA1 expression. These results indicate that apoA-I mobilizes intracellular cholesterol for the ABCA1-mediated release from the compartment that is under the control of ACAT. The cholesterol mobilization process is presumably related to PKC activation by apoA-I.  相似文献   

20.
Summary The genital haemal sinus, present throughout the gonad wall of sea stars, is supposed to be the site of ultimate accumulation of nutrients for the germinal epithelium. Early vitellogenic pear-shaped oocytes are attached to this sinus by stalk-like processes. The ultrastructure of this association and of the oocyte-follicle cell complex is described with emphasis on mechanisms involved in oocyte nutrition.The genital haemal sinus, and sometimes portions of the surrounding genital coelomic sinus, contain a fine granular ground substance and amoeboid cells. Material similar to the haemal ground substance also fills vacuities in the inner basal laminae of the haemal sinus and intervenes between this layer and adjacent germinal and follicle cells in the ovarian lumen.Vitellogenesis is first detectable as numerous vacuoles accumulate within the oocyte-stalk near the haemal sinus; they contain flocculent material and often fuse with adjacent lysosome-like vacuoles. As vitellogenesis proceeds, oocytes develop complex and tenuous connections with the haemal sinus. These consist of a network of pseudopodia that interdigitate with thin sheet-like extensions of follicle cells. These cells are attached to the oolemma by microfilamentous processes and contain regularly arranged concentrations of glycogen granules and well developed rough endoplasmic reticulum.It is concluded, (1) that follicle cells provide each oocyte with a compartmentalized microenvironment within the ovarian lumen, (2) that such compartments are intimately associated with the nutrient laden haemal sinus, and (3) that nutritive and vitellogenic substances, derived extragonadally and stored temporarily in the ovarian wall, can pass through the oocyte-stalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号