首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Mechanicosensory mechanisms regulate cell differentiation during lung organogenesis. We have previously demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR) was integral to stretch-induced growth and development and that transient expression of antisense-CFTR (ASCFTR) had negative effects on lung structure and function. In this study, we examined adult alveolar type II (ATII) cell phenotype after transient knock down of CFTR by adenovirus-directed in utero expression of ASCFTR in the fetal lung.  相似文献   

2.

Background  

This study describes the functional interaction between the putative Ca2+ channel TRP4 and the cystic fibrosis transmembrane conductance regulator, CFTR, in mouse aorta endothelium (MAEC).  相似文献   

3.

Background  

Cystic fibrosis transmembrane conductance regulator (CFTR) was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels.  相似文献   

4.

Background

Several approaches for gene therapy of cystic fibrosis using viral and non‐viral vectors are currently being undertaken. Nevertheless, the present data suggest that vectors currently being used will either have to be further modified or, alternatively, novel vector systems need to be developed. Recently, bacteria have been proven as suitable vehicles for DNA transfer to a wide variety of eukaryotic cells. In this study, we assessed the ability of the facultative intracellular pathogen Listeria monocytogenes to deliver a cDNA encoding the human cystic fibrosis transmembrane conductance regulator (CFTR) to CHO‐K1 cells, since these cells have been extensively used for heterologous CFTR expression.

Methods

An established in vitro gene transfer system based on antibiotic‐mediated lysis of intracellular L. monocytogenes was exploited to transfer eukaryotic expression plasmids. Transient as well as stable CFTR transgene expression was analyzed by microscopical and biochemical methods; functionality was tested by whole‐cell patch‐clamp recordings.

Results

L. monocytogenes mediated gene transfer to CHO‐K1 cells was facilitated by an improved transfection protocol. In addition, the use of the isogenic mutant L. monocytogenes hlyW491A, engineered to produce a hemolysin variant with low toxigenic activity, greatly enhanced the efficiency of gene transfer. This strain allowed the transfer of functional CFTR to CHO‐K1 cells.

Conclusions

This is the first demonstration of L. monoyctogenes mediated CFTR transgene transfer. The successful in vitro transfer suggests that L. monocytogenes might be a potential vector for cystic fibrosis gene therapy or alternative applications and deserves further investigation in vitro as well as in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

5.

Background  

Bicarbonate activated Soluble Adenylyl Cyclase (sAC) is a unique cytoplasmic and nuclear signaling mechanism for the generation of cAMP. HCO3 - activates sAC in bovine corneal endothelial cells (BCECs), increasing [cAMP] and stimulating PKA, leading to phosphorylation of the cystic fibrosis transmembrane-conductance regulator (CFTR) and increased apical Cl- permeability. Here, we examined whether HCO3 - may also regulate the expression of sAC and thereby affect the production of cAMP upon activation by HCO3 - and the stimulation of CFTR in BCECs.  相似文献   

6.
Structural differences have been reported in the glycosylation patterns of cystic fibrosis glycoproteins. Although the gene mutated in cystic fibrosis (CFTR) has been cloned and characterized as a chloride channel, its relationship to the highly viscous mucus and structural glycoprotein and mucin abnormalities in cystic fibrosis still remains to be defined. We have evaluated O-glycan biosynthesis in CHO and BHK cells that express CFTR and F508 CFTR as in vitro models, and utilized the cftr knockout mouse as an in vivo model of CFTR dysfunction. Activities of glycosyltransferases and sulfotransferases synthesizing mucin type O-glycan chains were determined in these models. Differences in transferase activity levels were found between tissues and cell types and during mouse development. No specific patterns of activities were associated with the lack of CFTR or with F508CFTR expression. This suggests that it is not the presence or absence of normal CFTR, or the presence of mutant CFTR alone, but rather cell specific additional factors or pathophysiological consequences that determine the changes in mucin glycosylation in cystic fibrosis.  相似文献   

7.
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the hereditary disease cystic fibrosis. The most frequent mutant F508 has been shown in vitro to be retained in the endoplasmic reticulum. Ex vivo studies using immunohistochemical labelling in cryofixed skin biopsies have confirmed the mislocalization of F508 CFTR in sweat glands. The purpose of this study was to test CFTR antibodies in paraffin-embedded skin biopsies to take advantage of the superior tissue preservation as compared to cryofixation. A panel of 7 CFTR antibodies was applied to skin sections of healthy controls and of cystic fibrosis patients homozygous for the F508 mutation. Sweat gland labelling consistent with CFTR localization and different between control and cystic fibrosis tissue was obtained with 2 antibodies. Conventional staining controls confirmed the labelling specificity. The antibodies were subsequently tested in a series of 237 sections of 16 biopsy specimens. However, the sweat gland labelling pattern proved not to be dependent on CFTR genotype. This finding was the sole indicator of non-specificity of the staining which was revealed only by the size of our random sample. Our results emphasize that CFTR immunolabelling following formalin fixation has to be interpreted with the utmost caution.  相似文献   

8.
9.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.  相似文献   

10.
11.
12.

Background  

Pseudomonas aeruginosa is the leading cause of morbidity and mortality in patients with cystic fibrosis (CF). With chronicity of infection, the organism resides as a biofilm, shows multi-drug resistance, diversifies its colony morphology and becomes auxotrophic. The patients have been found to be colonized with multiple genotypes. The present work was carried out to characterize P. aeruginosa isolated from children with cystic fibrosis using phenotypic and genotypic methods.  相似文献   

13.

Background

Cystic fibrosis is a debilitating lung disease due to mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) and is associated with chronic infections resulting in elevated myeloperoxidase activity and generation of hypochlorous acid (HOCl). CFTR mutations lead to decreased levels of glutathione (GSH) and thiocyanate (SCN) in the epithelial lining fluid (ELF). Hypertonic saline is used to improve lung function however the mechanism is uncertain.

Methods

In the present study, the effect of GSH and SCN on HOCl-mediated cell injury and their changes in the ELF after hypertonic saline nebulization in wild type (WT) and CFTR KO mice was examined. CFTR sufficient and deficient lung cells were assessed for GSH, SCN and corresponding sensitivity towards HOCl-mediated injury, in vitro.

Results

CFTR (-) cells had lower extracellular levels of both GSH and SCN and were more sensitive to HOCl-mediated injury. In vivo, hypertonic saline increased ELF GSH in the WT and to a lesser extent in the CFTR KO mice but only SCN in the WT ELF. Finally, potential protective effects of GSH and SCN at concentrations found in the ELF against HOCl toxicity were examined in vitro.

Conclusions

While the concentrations of GSH and SCN associated with the WT ELF protect against HOCl toxicity, those found in the CFTR KO mice were less sufficient to inhibit cell injury. These data suggests that CFTR has important roles in exporting GSH and SCN which are protective against oxidants and that hypertonic saline treatment may have beneficial effects by increasing their levels in the lung.  相似文献   

14.

Background  

Stenotrophomonas maltophilia has recently gained considerable attention as an important emerging pathogen in cystic fibrosis (CF) patients. However, the role of this microorganism in the pathophysiology of CF lung disease remains largely unexplored. In the present study for the first time we assessed the ability of S. maltophilia CF isolates to adhere to and form biofilm in experimental infection experiments using the CF-derived bronchial epithelial IB3-1cell line. The role of flagella on the adhesiveness of S. maltophilia to IB3-1 cell monolayers was also assessed by using fliI mutant derivative strains.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR) has been known for the past 11 years to be a membrane glycoprotein with chloride channel activity. Only recently has the glycosylation of CFTR been examined in detail, by O'Riordan et al in Glycobiology. Using cells that overexpress wild-type (wt)CFTR, the presence of polylactosamine was noted on the fully glycosylated form of CFTR. In the present commentary the results of that work are discussed in relation to the glycosylation phenotype of cystic fibrosis (CF), and the cellular localization and processing of ΔF508 CFTR. The significance of the glycosylation will be known when endogenous CFTR from primary human tissue is examined.  相似文献   

16.

Background

Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR) defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF). Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (VTE) to assess ionic transport is a powerful test evaluating the restoration of CFTR function. Nasal VTE in CF mice must be well characterized for correct interpretation.

Methods

We performed VTE measurements in large-scale studies of two mouse models of CF—B6;129 cftr knockout and FVB F508del-CFTR—and their respective wild-type (WT) littermates. We assessed the repeatability of the test for cftr knockout mice and defined cutoff points distinguishing between WT and F508del-CFTR mice.

Results

We determined the typical VTE values for CF and WT mice and demonstrated the existence of residual CFTR activity in F508del-CFTR mice. We characterized intra-animal variability in B6;129 mice and defined the cutoff points for F508del-CFTR chloride secretion rescue. Hyperpolarization of more than -2.15 mV after perfusion with a low-concentration Cl- solution was considered to indicate a normal response.

Conclusions

These data will make it possible to interpret changes in nasal VTE in mouse models of CF, in future preclinical studies.  相似文献   

17.

Background

Small interfering RNA (siRNA) against αENaC (α-subunit of the epithelial Na channel) and CFTR (cystic fibrosis transmembrane conductance regulator) was used to explore ENaC and CTFR function in newborn rat lungs.

Methods

Twenty-four hours after trans-thoracic intrapulmonary (ttip) injection of siRNA-generating plasmid DNA (pSi-0, pSi-4, or pSi-C2), we measured CFTR and ENaC expression, extravascular lung water, and mortality.

Results

αENaC and CFTR mRNA and protein decreased by ~80% and ~85%, respectively, following αENaC and CFTR silencing. Extravascular lung water and mortality increased after αENaC and CFTR-silencing. In pSi-C2-transfected isolated DLE cells there were attenuated CFTR mRNA and protein. In pSi-4-transfected DLE cells αENaC mRNA and protein were both reduced. Interestingly, CFTR-silencing also reduced αENaC mRNA and protein. αENaC silencing, on the other hand, only slightly reduced CFTR mRNA and protein.

Conclusion

Thus, ENaC and CFTR are both involved in the fluid secretion to absorption conversion around at birth.  相似文献   

18.
The cystic fibrosis transmembrane conductance regulator (CFTR) is the affected protein in cystic fibrosis (CF). The high rate of CF carriers has led to speculation that there must be, similar to the sickle cell haemoglobin advantage in malaria, a selective advantage for heterozygotes. Such a selective advantage may be conferred through reduced attachment of Salmonella typhi to intestinal mucosa, thus providing resistance to typhoid fever. We tested this hypothesis by genotyping patients and controls in a typhoid endemic area in Indonesia for two highly polymorphic markers in CFTR and the most common CF mutation. We found an association between genotypes in CFTR and susceptibility to typhoid fever (OR=2.6). These analyses suggest that the role CFTR plays in vitro in S. typhi infection is also important for infection in the human population.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
20.

Background  

Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF). To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号