首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact chromoplasts were isolated from tomato fruits at differentripening stages by Percoll density gradient centrifugation.The isolated chromoplast fractions were contaminated very littleby other organelles, although the fraction from fully ripenedfruits contained some mitochondria and microbodies. As the transformationof chloroplasts to chromoplasts proceeded, the density of theplastids decreased from 1.096 to 1.075 g-cm-3 and the decreasewas related to a decrease in chlorophyll and an increase inlycopene in the plastids. (Received December 21, 1983; Accepted April 20, 1984)  相似文献   

2.
Clermont H  Douce R 《FEBS letters》1970,9(5):284-286
Mitochondria and plastids isolated from various plant tissues by methods which exclude contamination by other cell organelles lack phospholipase D activity.  相似文献   

3.
Glyoxysomes, mitochondria, and plastids were separated from the cytosol of germinating castor bean endosperm by sucrose gradient centrifugation in a vertical rotor (25 min, 50,000gav). The amounts of nicotinamide cofactors, NAD(H) and NADP(H), retained in the isolated organelle fractions were measured by enzyme cycling techniques. The NAD(H) was equally distributed between the cytosol and the mitochondria with a small amount in the glyoxysomes. The mitochondria retained 4 pmol of NAD(H)/ μg protein, about seven times as much as the glyoxysomes. Most of the NADP(H) was in the cytosol. However, the glyoxysomes and plastids retained significant amounts, both having 0.3 pmol NADP(H)/μg protein, twice that in the mitochondria. The subcellular distribution of NADP(H) was compared to the location of dehydrogenases capable of using this cofactor. The cytosol and plastids contained 6-phosphogluconate dehydrogenase. NADP isocitrate dehydrogenase was found in the glyoxysomes, in mitochondria, and in an unidentified subcellular fraction obtained at 1.16 g/ml in the density gradients. Knowledge of the quantities of NADP(H) and NAD(H) retained in the isolated organelles should make it possible to investigate their reduction and reoxidation in intact organelles.  相似文献   

4.
花椒果实分泌囊发育过程的超微结构研究   总被引:3,自引:0,他引:3  
电镜观察结果表明,花椒(Zanthoxylum bungeanum Maxim.)果实分泌囊是由裂生方式形成,由鞘细胞、上皮细胞和油腔构成。对分泌囊的原始细胞、油腔发生和扩大以及发育成熟3个时期的超微结构研究表明,其精油是在分泌囊油腔发生时开始积累,以油滴形态存在于上皮细胞的质体内及其周围的细胞质中。根据各细胞器的变化规律分析,质体是精油合成的主要场所,内质网参与精油的合成和转运,线粒体为上述活动提供能量。上皮细胞内积累的精油可能通过两种途径排出细胞,分泌至油腔内贮存。鞘细胞内也积累精油,其主要合成场所也与质体有关,以后转运至上皮细胞内。成熟分泌囊的质体由于功能改变,其内出现蛋白质结晶和淀粉粒。  相似文献   

5.
Homogeneous populations of different chloroplast classes (organelles with morphologically intact, swollen and broken external envelopes) have been separated by combinations of differential and silica sol density gradient centrifugation. Organelles with intact envelopes purified in silica (Ludox) gradients are rather stable against osmotic rupture. The ultrastructural analysis of isolated organelles revealed colloid precipitates predominantly at the organelle membranes. Evidence is presented that Mg2+ and strong cationic membrane groups participate in the colloid/membrane interaction. Physiological activities of silica gradient-purified unbroken chloroplasts were compared with those of organelles isolated in silica sol-free media (chloroplastic NAD-dependent malic dehydrogenase, Mg2+-independent; NAD-dependent phosphoglycerate kinase/triosephosphate dehydrogenase, Mg2+-dependent; light-dependent phosphoglycerate and CO2 reduction; incorporation of deoxyribonucleotide triphosphates in an acid-insoluble, DNase-sensitive form). Altered or no activities were recovered with silica-treated plastids. Care should therefore be taken if silica gradient-purified organelles are used for investigations of physiological processes. However, due to the high resolving power of the gradient and the isotonicity of the isopycnic steps the method is recommended and has successfully been applied for the isolation of pure high mol wt substances from cell organelles, e.g. for higher plant chloroplast and nuclear DNA.  相似文献   

6.
Summary The cytoplasmic content and the distribution of intramembrane particles (IMPs) of the plasma membrane of isolated sperm cells of perennial ryegrass (Lolium perenne L.) have been characterized using flow cytometry, transmission electron microscopy, confocal scanning laser microscopy and freeze-fracture studies. The isolated haploid sperm cells contain a variety of cell organelles with the exception of microtubules. Proplastids and plastids with starch were observed, although only rarely. Vacuoles containing remnants of organelles and stacked lamellae of endoplasmic reticulum with cytoplasmic inclusions were observed frequently, indicating that autophagy takes place. The number of mitochondria varies from 11 to 26 with an average of 17. Generally, the nucleus has a lobed shape and displays various interphasic stages of chromatin condensation. The analysis of the number of mitochondria and the nuclear state did not show evidence of sperm cell dimorphism. The cytological variability observed, could be explained by differences in developmental stages already present in vivo at the moment of isolation. No correlation between the number of mitochondria and the nuclear cross-sectioned area and/or the condensation state of the chromatin could be found. The density of intramembrane particles of the plasma membrane on the exoplasmic fracture face is more than twice that on the protoplasmic fracture face. That is the opposite of what was found for sporophytic cells of perennial ryegrass. These results are discussed in relation to the potential use of these cells for biotechnology and developmental studies.  相似文献   

7.
Fatty Acid synthesis in endosperm of young castor bean seedlings   总被引:10,自引:6,他引:4       下载免费PDF全文
Vick B  Beevers H 《Plant physiology》1978,62(2):173-178
Enzyme assays on organelles isolated from the endosperm of germinating castor bean (Ricinus communis) by sucrose density gradient centrifugation showed that fatty acid synthesis from [14C]malonyl-CoA was localized exclusively in the plastids. The optimum pH was 7.7 and the products was mainly free palmitic and oleic acids. Both NADH and NADPH were required as reductants for maximum activity. Acetyl-CoA, and acyl-carrier protein from Escherichia coli increased the rate of fatty acid synthesis, while low O2 levels suppressed synthesis. In the absence of NADPH or at low O2 concentration, stearic acid became a major product at the expense of oleic acid. Fatty acid synthesis activity was highest during the first 3 days of germination, preceding the maximum development of mitochondria and glyoxysomes. It is proposed that the plastids are the source of fatty acids incorporated into the membranes of developing organelles.  相似文献   

8.
The intraplastidic localization of the enzymes that catalyze the conversion of δ-aminolevulinic acid (ALA) to protoporphyrin IX (Proto) is a controversial issue. While some researchers assign a stromal location for these enzymes, others favor a membranebound one. Etiochloroplasts were isolated from etiolated cucumber cotyledons (Cucumis sativus, L.) by differential centrifugation and were purified further by Percoll density gradient centrifugation. Purified plastids were highly intact, and contamination by other subcellular organelles was reduced five- to ninefold in comparison to crude plastid preparations. Most of the ALA to Proto conversion activity was found in the plastids. On a unit protein basis, the ALA to Proto conversion activity of isolated mitochondria was about 2% that of the purified plastids, and could be accounted for by contamination of the mitochondrial preparation by plastids. Lysis of the purified plastids by osmotic shock followed by high speed centrifugation, yielded two subplastidic fractions: a soluble clear stromal fraction and a pelleted yellowish one. The stromal fraction contained about 11% of the plastidic ALA to Proto conversion activity while the membrane fraction contained the remaining 89%. The stromal ALA to Proto conversion activity was in the range of stroma contamination by subplastidic membrane material. Complete solubilization of the ALA to Proto activity was achieved by high speed shearing and cavitation, in the absence of detergents. Solubilization of the ALA to Proto conversion activity was accompanied by release of about 30% of the membrane-bound protochlorophyllide. It is proposed that the enzymes that convert ALA to Proto are loosely associated with the plastid membranes and may be solubilized without the use of detergents. It is not clear at this stage whether the enzymes are associated with the outer or inner plastid membranes and whether they form a multienzyme complex or not.  相似文献   

9.
Protoplasts were prepared from castor bean (Ricinus communis) endosperm by treatment with a mixture of the commercial enzymes Macerozyme R-10 and Cellulose “Onozuka” R-10. The protoplasts were gently ruptured by forcing the suspension through a hypodermic needle and the homogenate centrifuged on a linear sucrose gradient. From such a homogenate the mitochondria are recovered at their typical isopycnic density of 1.18 g/ml, but the glyoxysomes are retained, with other membranes, at a density of 1.13. The plastids reach their typical density of 1.22 on the gradient and are thus clearly separated from other organelles. Moreover, since essentially all of the ribulose bisphosphate carboxylase activity on the gradient is present in this fraction it can be concluded that the plastids are intact and have been recovered in high yield.  相似文献   

10.
De novo purine biosynthesis is localized to both mitochondria and plastids isolated from Bradyrhizobium sp.-infected cells of cowpea (Vigna unguiculata L. Walp) nodules, but several of the pathway enzymes, including aminoimidazole ribonucleotide synthetase (AIRS [EC 6.3.3.1], encoded by Vupur5), are encoded by single genes. Immunolocalization confirmed the presence of AIRS protein in both organelles. Enzymatically active AIRS was purified separately from nodule mitochondria and plastids. N-terminal sequencing showed that these two isoforms matched the Vupur5 cDNA sequence but were processed at different sites following import; the mitochondrial isoform was five amino acids longer than the plastid isoform. Electrospray tandem mass spectrometry of a trypsin digest of mitochondrial AIRS identified two internal peptides identical with the amino acid sequence deduced from Vupur5 cDNA. Western blots of proteins from mitochondria and plastids isolated from root tips showed a single AIRS protein present at low levels in both organelles. (35)S-AIRS protein translated from a Vupur5 cDNA was imported into isolated pea (Pisum sativum) leaf chloroplasts in vitro by an ATP-dependent process but not into import-competent mitochondria from several plant and non-plant sources. Components of the mature protein are likely to be important for import because the N-terminal targeting sequence was unable to target green fluorescent protein to either chloroplasts or mitochondria in Arabidopsis leaves. The data confirm localization of the protein translated from the AIRS gene in cowpea to both plastids and mitochondria and that it is cotargeted to both organelles, but the mechanism underlying import into mitochondria has features that are yet to be identified.  相似文献   

11.
The various metabolic activities of plastids require continuous exchange of reactants and products with other organelles of the plant cell. Physical interactions between plastids and other organelles might therefore enhance the efficiency of plant metabolism. We have observed a close apposition of plastids and nuclei in various organs of Nicotiana tabacum and Arabidopsis thaliana. In hypocotyl epidermal cells, plastids and stromules, stroma-filled tubular extensions of the plastid envelope membrane, were observed to reside in grooves and infoldings of the nuclear envelope, indicating a high level of contact between the two organelle membranes. In a number of non-green tissues, including suspension-cultured cells, perinuclear plastids were frequently associated with long stromules that extended from the cell center to the cell membrane. In cotyledon petioles, cells lying adjacent to one another frequently contained stromules that met on either side of the shared cell wall, suggesting a means of intercellular communication. Our results therefore suggest that stromules have diverse roles within plant cells, perhaps serving as pathways between nuclei and more distant regions of the cell and possibly even other cells.  相似文献   

12.
Guo F  Hu SY  Yuan Z  Zee SY  Han Y 《Protoplasma》2005,225(1-2):5-14
Summary. In this paper, the stages of normal sexual reproduction between pollen tube penetration of the archegonium and early embryo formation in Pinus tabulaeformis are described, emphasizing the transmission of parental cytoplasm, especially the DNA-containing organelles – plastids and mitochondria. The pollen tube growing in the nucellus contained an irregular tube nucleus followed by a pair of sperm cells. The tube cytoplasm contained abundant organelles, including starch-containing plastids and mitochondria. The two sperm cells differed in their volume of cytoplasm. The leading sperm, with more cytoplasm, contained abundant plastids and mitochondria, while the trailing one, with a thin layer of cytoplasm, had very few organelles. The mature egg cell contained a great number of mitochondria, whereas it lacked normal plastids. At fertilization, the pollen tube penetrated into the egg cell at the micropylar end and released all of its contents, including the two sperms. One of the sperm nuclei fused with the egg nucleus, whereas the other one was retained by the receptive vacuole. Very few plastids and mitochondria of male origin were observed around the fusing sperm and egg nuclei, while the retained sperm nucleus was surrounded by a large amount of male cytoplasm. The discharged tube cytoplasm occupied a large micropylar area in the egg cell. In the free nuclear proembryo, organelles of maternal and paternal origins intermingled in the neocytoplasm around the free nuclei. Most of the mitochondria had the same features as those of the egg cell, but some appeared to be from sperm cells and tube cytoplasm. Plastids were obviously of male origin, with an appearance similar to those of the sperm or tube cells. After cellularization of the proembryo, maternal mitochondria became more abundant than the paternal ones and the plastids enlarged and began to accumulate starch. The results reveal the cytological mechanism for paternal inheritance of plastids and biparental inheritance of mitochondria in Chinese pine. Correspondence and reprints: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing 100094, People’s Republic of China.  相似文献   

13.
Metal-dependent superoxide dismutases (SOD; EC 1.15.1.1) are present in many cell compartments (mitochondria, plastids, nuclei, peroxisomes, endoplasmic reticulum, cell wall and cytosol). We have established that SOD is also localized in the central vacuole. Cyanide-sensitive Cu, Zn-SOD was found in the fraction of isolated vacuoles of red beet roots (Beta vulgaris L.). The enzyme was represented by three isoforms. Comparison of isoenzyme composition and the level of SOD activity in vacuoles, nuclei, plastids and mitochondria isolated from root cells has shown that Cu, Zn-SOD is present in vacuoles and nuclei, two SOD forms (Cu, Zn- and Fe-SOD) are present in plastids, and two SOD forms (Cu, Zn- and Mn-SOD) are present in mitochondria. Cu, Zn-SOD of organelles, unlike vacuolar Cu, Zn-SOD, had only one isoform. The level of enzyme activity from the vacuolar fraction was twice higher than the level of SOD activity from the fractions of isolated organelles. Previously it has been suggested that Cu, Zn-SOD may be localized on the vacuolar membrane or in the near-membrane space from the side of cytoplasm. Our tests have revealed the Cu, Zn-SOD activity in water-soluble extracts of isolated vacuole fractions in the absence of detergent, which may confirm localization of the enzyme inside the organelles.  相似文献   

14.
Developing chloroplasts were isolated from the basal region of green barley ( Hordeum vulgare L. cv. Menuet) leaves and their ultrastructure and biochemical composition were compared to those of mature chloroplasts from the tip of the same leaves, using two methods of purification on sucrose and Percoll gradients.
When examined and compared to mature chloroplasts, the developing chloroplasts showed well-developed grana stacks, but these last organelles were 2-fold smaller and contained lower amounts of chlorohylls and polar lipids. Only traces of trans -3-hexadecenoic acid could be detected in phosphatidylglycerol of developing plastids. The protein content of these plastids was higher than in mature plastids and showed an increased proportion of polypeptides linked to P-700 chlorophyll α-protein. The photosynthetic activity of these plastids was about 2-fold lower and their photosystem 1/photosystem II ratio higher than in mature chloroplasts.  相似文献   

15.
Isolation of Vacuoles from Root Storage Tissue of Beta vulgaris L   总被引:27,自引:20,他引:7       下载免费PDF全文
Morphologically intact and osmotically active vacuoles were isolated from root storage tissue of the red beet Beta vulgaris L., and the factors influencing both yield and stability of the vacuoles were determined. Successful isolation depended upon slicing the tissue in an apparatus specifically designed to cut open plant cells without the use of high shear forces and to liberate cellular organelles into an undisturbed reservoir of osmoticum. The resulting brei was centrifuged at 2,000g for 10 min to yield a pellet which contained many vacuoles but which also contained tissue fragments, nuclei, mitochondria, and plastids. The vacuoles were further purified by accelerated flotation through a Metrizamide step gradient. Biochemical assays, light microscopy, and electron microscopy confirmed that there was only trace contamination of the final vacuole preparation by other organelles. Isolated vacuoles were intact and retained their in vivo coloration.  相似文献   

16.
 Sperm of Plumbago zeylanica are dimorphic with regard to numbers of mitochondria and plastids. In most cases examined, the plastid-rich sperm fused with the egg while the sperm with fewer plastids fused with the central cell. However, plastids cannot be directly responsible for fusion because fusion occurs between the plasma membranes of egg and sperm. The question is whether sperm cell membranes are distinctive and possibly dimorphic. Sperm in whole pollen grains and isolated sperm were freeze-fractured. In pollen, freeze-fractured sperm appeared only in cross fractures. No extended membrane fracture faces of sperm were found. Among isolated sperm, two sizes of sperm with different organelles were observed. Isolated sperm were assigned to two categories based on cell diameter and on size and density of organelles. Membrane particles on most sperm were arranged without distinctive pattern. Some hexagonal arrays were observed. In sperm that had been maintained at 4°C, particle-free areas, a probable consequence of lipid phase separations, appeared on plasma membrane fracture faces. No unique fracture patterns and no patterns of dimorphism were detected on freeze-fractured plasma membranes of Plumbago sperm. Received: 14 January 1997 / Revision accepted: 6 June 1997  相似文献   

17.
Microsporogenesis in dwarf Phaseolus vulgaris was studied under the electron microscope. Before meiosis the microspore mother cell had a lot of organelles especially plastids and ER in its cytoplasm. There were many osmiophilic granules adhering to the membranes of the plastids and vesicular ER until meiosis began. Some cytoplasmic channels were present between adjacent microsporocytes from pachytene to telophase Ⅱ. The organelles were at early stage in the early rnlcrospore, the plastids and mitochondria of which showed regional distribution. Original vacou[es were produced by smooth ER. The organelles in the tapetum cells were mainly mitochondria, plastids and ER. The ER was concentric circles in shape in transverse section.  相似文献   

18.
Chloroplasts (plastids) and mitochondria evolved from endosymbiotic bacteria. These organelles perform vital functions in photosynthetic eukaryotes, such as harvesting and converting energy for use in biological processes. Consistent with their evolutionary origins, plastids and mitochondria proliferate by the binary fission of pre-existing organelles. Here, I review the structures and functions of the supramolecular machineries driving plastid and mitochondrial division, which were discovered and first studied in the primitive red alga Cyanidioschyzon merolae. In the past decade, intact division machineries have been isolated from plastids and mitochondria and examined to investigate their underlying structure and molecular mechanisms. A series of studies has elucidated how these division machineries assemble and transform during the fission of these organelles, and which of the component proteins generate the motive force for their contraction. Plastid- and mitochondrial-division machineries have important similarities in their structures and mechanisms despite sharing no component proteins, implying that these division machineries evolved in parallel. The establishment of these division machineries might have enabled the host eukaryotic ancestor to permanently retain these endosymbiotic organelles by regulating their binary fission and the equal distribution of resources to daughter cells. These findings provide key insights into the establishment of endosymbiotic organelles and have opened new avenues of research into their evolution and mechanisms of proliferation.  相似文献   

19.
Isolation of intact plastids from a range of plant tissues   总被引:27,自引:24,他引:3       下载免费PDF全文
A technique for the isolation of intact plastids from spinach (Spinacia oleracea) and pea (Pisum sativum) leaves, pea roots and castor bean (Ricinus communis) endosperm is described. This technique involves brief centrifugation of whole homogenates on density gradients. Intact plastids were located in the gradient by assaying for triose phosphate isomerase activity. Contamination of the plastic peak with mitochondria and microbodies was estimated by measurement of cytochrome oxidase and catalase, respectively. For three of the four tissues the level of contamination of the plastids by these organelles was 2% or less. The sedimentation behavior of microbodies from different tissues is discussed.  相似文献   

20.
A study was made of the number of plastids and mitochondria present in generative cells of Solanum immediately after microspore mitosis, and the fate of these organelles during development of the pollen was determined. Changes were followed via electron microscopy of anthers of S. chacoense and S. tuberosum Group Phureja × S. chacoense. In earliest stages the generative cells were oval and had one surface along the intine and other surfaces in contact with the vegetative cell. As the pollen matured the generative cells elongated, became spindle-shaped, and were completely engulfed in the vegetative cells. At the earliest stages studied, both mitochondria and plastids were present in the generative cell. Plastids of the generative cell were, in contrast to those of the vegetative cells, fewer, smaller, and lacking in starch. Through the maturation stages the content of these organelles in the vegetative cells remained unchanged. While the generative cells retained mitochondria until anthesis, their plastids disappeared completely during maturation. This selective loss during generative cell maturation could lead to transmission of those characteristics encoded in plastid DNA through the pistillate parent only. The mechanism could explain earlier genetic evidence that plastid characters of Solanum were transmitted uniparentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号