首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase D (PKD)/protein kinase Cmicro (PKCmicro, a serine/threonine protein kinase with distinct structural and enzymological properties, is rapidly activated in intact cells via PKC. The amino-terminal region of PKD contains a cysteine-rich domain (CRD) that directly binds phorbol esters with a high affinity. Here, we show that treatment of transfected RBL 2H3 cells with phorbol 12,13-dibutyrate (PDB) induces a striking CRD-dependent translocation of PKD from the cytosol to the plasma membrane, as shown by real time visualization of a functional green fluorescent protein (GFP)-PKD fusion protein. A single amino acid substitution in the second cysteine-rich motif of PKD (P287G) prevented PDB-induced membrane translocation but did not affect PKD activation. Our results indicate that PKD translocation and activation are distinct processes that operate in parallel to regulate the activity and localization of this enzyme in intact cells.  相似文献   

2.
The serine/threonine kinase protein kinase D1 (PKD1) is a protein kinase C (PKC) substrate that mediates antigen receptor signal transduction in lymphocytes. PKC phosphorylates serines 744/748 within the PKD1 catalytic domain, and this is proposed to be necessary and sufficient for enzyme activation. Hence, a PKD1 mutant with alanine substituted at positions 744 and 748 (PKD-S744A/S748A) is catalytically inactive. Conversely, a PKD1 mutant with glutamic residues substituted at positions 744 and 748 as phospho-mimics (PKD-S744E/S748E) is constitutively active when expressed in Cos7 or HeLa cells. The present study reveals that Ser-744/Ser-748 phosphorylation is required for PKD1 activation in lymphocytes. However, PKD-S744E/S748E is not constitutively active but, like the wild type enzyme, requires antigen receptor triggering or phorbol ester stimulation. Antigen receptor activation of wild type PKD is dependent on phospholipase C (PLC)/diacylglycerol (DAG) and PKC, whereas PKD-S744E/S748E is only dependent on PLC/DAG but no longer requires PKC. Hence, substitution of serines 744 and 748 with glutamic residues as phospho-mimics bypasses the PKC requirement for PKD1 activation but does not bypass the need for antigen receptors, PLC, or DAG. In lymphocytes, PKD1 is, thus, not regulated by PLC and PKC in a linear pathway; rather, PKD1 activation has more stringent requirements for integration of dual PLC signals, one mediated by PKCs and one that is PKC-independent.  相似文献   

3.
Protein kinase D (PKD)/protein kinase C (PKC) mu is a serine/threonine protein kinase that can be activated by physiological stimuli like growth factors, antigen-receptor engagement and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires PKC activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular translocation of a green fluorescent protein-tagged PKD was analyzed by real-time visualization in fibroblasts and epithelial cells stimulated with bombesin, a GPCR agonist. We found that bombesin induced a rapidly reversible plasma membrane translocation of green fluorescent protein-tagged PKD, an event that can be divided into two distinct mechanistic steps. The first step, which is exclusively mediated by the cysteine-rich domain in the N terminus of PKD, involved its translocation from the cytosol to the plasma membrane. The second step, i.e. the rapid reverse translocation of PKD from the plasma membrane to the cytosol, required its catalytic domain and surprisingly PKC activity. These findings provide evidence for a novel mechanism by which PKC coordinates the translocation and activation of PKD in response to bombesin-induced GPCR activation.  相似文献   

4.
Protein kinase D (PKD)/protein kinase Cmu is a serine/threonine protein kinase that has been localized in the cytosol and in several intracellular compartments including Golgi, mitochondria and plasma membrane. Using real time imaging of fluorescent protein (GFP)-tagged PKD, we have found that the accumulation of PKD in the Golgi compartment, following a temperature shift from 37 to 20 degrees C, was mediated by the cysteine-rich domain (CRD) of PKD. The CRD of PKD also mediates its interaction with the plasma membrane, further supporting the conclusion that the CRD of PKD may act as a subcellular localization signal.  相似文献   

5.
This study explores the links between the GTPase RhoA and the serine kinase protein kinase D (PKD) during thymocyte development. The rationale is that RhoA and PKD regulate common biological responses during T cell development, but there is nothing known about their interdependence. In fibroblasts, Rho function is required for activation of PKD catalytic activity. However, the data show that activation of Rho is neither sufficient nor essential for PKD activation in T cells. One alternative explanation for the apparent convergence of PKD and Rho signaling in T cells is that PKD responses might be Rho-dependent. To address this latter possibility, we probed the Rho requirements for the actions of constitutively active PKD mutants in pre-T cells of transgenic mice. Active PKD can localize to either the plasma membrane or the cytosol, and we therefore compared the Rho requirements for the actions of membrane- or cytosol-localized PKD. Here we show that membrane-localized PKD regulation of pre-T cell differentiation is Rho-dependent, but the actions of cytosol-localized PKD are not. These studies demonstrate that a Rho requirement for PKD activation is not ubiquitous. Moreover, links between PKD and Rho are determined by the cellular location of PKD.  相似文献   

6.
The spatio-temporal changes of signaling molecules in response to G protein-coupled receptors (GPCR) stimulation is a poorly understood process in intestinal epithelial cells. Here we investigate the dynamic mechanisms associated with GPCR signaling in living rat intestinal epithelial cells by characterizing the intracellular translocation of protein kinase D (PKD), a serine/threonine protein kinase involved in mitogenic signaling in intestinal epithelial cells. Analysis of the intracellular steady-state distribution of green fluorescent protein (GFP)-tagged PKD indicated that in non-stimulated IEC-18 cells, GFP-PKD is predominantly cytoplasmic. However, cell stimulation with the GPCR agonist vasopressin induces a rapid translocation of GFP-PKD from the cytosol to the plasma membrane that is accompanied by its activation via protein kinase C (PKC)-mediated process and posterior plasma membrane dissociation. Subsequently, active PKD is imported into the nuclei where it transiently accumulates before being exported into the cytosol by a mechanism that requires a competent Crm1 nuclear export pathway. These findings provide evidence for a mechanism by which PKC coordinates in intestinal epithelial cells the translocation and activation of PKD in response to vasopressin-induced GPCR activation.  相似文献   

7.
8.
Protein kinase D (PKD)/protein kinase C mu is a serine/threonine protein kinase activated by growth factors, antigen-receptor engagement, and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires protein kinase C (PKC) activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular distribution of PKD was analyzed in live cells by imaging fluorescent protein-tagged PKD and in fixed cells by immunocytochemistry. We found that PKD shuttled between the cytoplasm and the nucleus in both fibroblasts and epithelial cells. Cell stimulation with mitogenic GPCR agonists that activate PKD induced a transient nuclear accumulation of PKD that was prevented by inhibiting PKC activity. The nuclear import of PKD requires its cys2 domain in conjunction with a nuclear import receptor, while its nuclear export requires its pleckstrin homology domain and a competent Crm1-dependent nuclear export pathway. This study thus characterizes the regulated nuclear transport of a signaling molecule in response to mitogenic GPCR agonists and positions PKD as a serine kinase whose kinase activity and intracellular localization is coordinated by PKC.  相似文献   

9.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   

10.
Diacylglycerol kinase (DGK) is suggested to attenuate diacylglycerol-induced cell responses through the phosphorylation of this second messenger to phosphatidic acid. Here, we show that DGKalpha, an isoform highly expressed in T lymphocytes, translocates from cytosol to the plasma membrane in response to two different receptors known to elicit T cell activation responses: an ectopically expressed muscarinic type I receptor and the endogenous T cell receptor. Translocation in response to receptor stimulation is rapid, transient, and requires calcium and tyrosine kinase activation. DGKalpha-mediated phosphatidic acid generation allows dissociation of the enzyme from the plasma membrane and return to the cytosol, as demonstrated using a pharmacological inhibitor and a catalytically inactive version of the enzyme. The NH(2)-terminal domain of the protein is shown to be responsible for receptor-induced translocation and phosphatidic acid-mediated membrane dissociation. After examining induction of the T cell activation marker CD69 in cells expressing a constitutively active form of the enzyme, we present evidence of the negative regulation that DGKalpha exerts on diacylglycerol-derived cell responses. This study is the first to describe DGKalpha as an integral component of the signaling cascades that link plasma membrane receptors to nuclear responses.  相似文献   

11.
Tachykinins, acting through NK(3) receptors (NK(3)R), contribute to excitatory transmission to intrinsic primary afferent neurons (IPANs) of the small intestine. Although this transmission is dependent on protein kinase C (PKC), its maintenance could depend on protein kinase D (PKD), a downstream target of PKC. Here we show that PKD1/2-immunoreactivity occurred exclusively in IPANs of the guinea pig ileum, demonstrated by double staining with the IPAN marker NeuN. PKCepsilon was also colocalized with PKD1/2 in IPANs. PKCepsilon and PKD1/2 trafficking was studied in enteric neurons within whole mounts of the ileal wall. In untreated preparations, PKCepsilon and PKD1/2 were cytosolic and no signal for activated (phosphorylated) PKD was detected. The NK(3)R agonist senktide evoked a transient translocation of PKCepsilon and PKD1/2 from the cytosol to the plasma membrane and induced PKD1/2 phosphorylation at the plasma membrane. PKCepsilon translocation was maximal at 10 s and returned to the cytosol within 2 min. Phosphorylated-PKD1/2 was detected at the plasma membrane within 15 s and translocated to the cytosol by 2 min, where it remained active up to 30 min after NK(3)R stimulation. PKD1/2 activation was reduced by a PKCepsilon inhibitor and prevented by NK(3)R inhibition. NK(3)R-mediated PKCepsilon and PKD activation was confirmed in HEK293 cells transiently expressing NK(3)R and green fluorescent protein-tagged PKCepsilon, PKD1, PKD2, or PKD3. Senktide caused membrane translocation and activation of kinases within 30 s. After 15 min, phosphorylated PKD had returned to the cytosol. PKD activation was confirmed through Western blotting. Thus stimulation of NK(3)R activates PKCepsilon and PKD in sequence, and sequential activation of these kinases may account for rapid and prolonged modulation of IPAN function.  相似文献   

12.
Protein kinase C (PKC) is a family of serine/threonine kinases whose activity is controlled, in part, by phosphorylation on three conserved residues that are located on the catalytic domain of the enzyme, known as the activation-loop, the turn-motif, and the C-terminal hydrophobic-motif sites. Using a panel of phospho-specific antibodies, we have determined that PKC beta(I) and delta are constitutively phosphorylated on all three sites in unstimulated and activated T cells. Although PKC theta is constitutively phosphorylated at the activation-loop and turn-motif sites in T cells, PMA or anti-CD3/CD28 stimulation results in an increase in phosphorylation at the hydrophobic-motif (Ser695), an event that coincides with translocation of the enzyme from the cytosol/cytoskeleton to the membrane. Studies on the stimulus-induced phosphorylation of PKC theta demonstrate that an upstream kinase activity involving a conventional PKC isoform(s) and the PI3-kinase pathway, rather than autophosphorylation or the rapamycin-sensitive mTOR pathway, regulates this site in T lymphocytes. However, hydrophobic-motif phosphorylation does not appear to control membrane translocation, suggesting that this site may control other aspects of PKC theta signalling.  相似文献   

13.
Protein kinase D (PKD) is a serine/threonine kinase regulated by diacylglycerol signaling pathways with unique domain composition and enzymatic properties, still awaiting identification of its specific substrate(s). Here we have isolated, cloned, and characterized a novel protein from PC12 cells, termed Kidins220 (kinase D-interacting substrate of 220 kDa), as the first identified PKD physiological substrate. Kidins220 contains 11 ankyrin repeats and four transmembrane domains within the N-terminal region. We have shown that Kidins220 is an integral membrane protein selectively expressed in brain and neuroendocrine cells, where it concentrates at the tip of neurites. In PC12 cells, PKD co-immunoprecipitates and phosphorylates endogenous Kidins220. This phosphorylation is increased after stimulating PKD activity in vivo by phorbol-12, 13-dibutyrate treatment. A constitutively active PKD mutant (PKD-S744E/S748E) phosphorylates recombinant Kindins220-VSVG in vitro in the absence of phorbol-12,13-dibutyrate. Conversely, Kidins220-VSVG phosphorylation is abolished when a dominant negative mutant of PKD (PKD-D733A) is used. Moreover, a peptide within the Kidins220 sequence, containing serine 919 in a consensus motif for PKD-specific phosphorylation, behaved as the best peptide substrate to date. Substitution of serine 919 to alanine abrogated peptide phosphorylation. Furthermore, by generating an antibody recognizing Kidins220 phosphorylated on serine 919, we show that phorbol ester treatment causes the specific phosphorylation of this residue in PC12 cells in vivo. Our results provide the first physiological substrate for PKD and indicate that Kidins220 is phosphorylated by PKD at serine 919 in vivo.  相似文献   

14.
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.  相似文献   

15.
A novel serine/threonine protein kinase regulated by phorbol esters and diacylglycerol (named PKD) has been identified. PKD contains a cysteine-rich repeat sequence homologous to that seen in the regulatory domain of protein kinase C (PKC). A bacterially expressed NH2-terminal domain of PKD exhibited high affinity phorbol ester binding activity (Kd = 35 nM). Expression of PKD cDNA in COS cells conferred increased phorbol ester binding to intact cells. The catalytic domain of PKD contains all characteristic sequence motifs of serine protein kinases but shows only a low degree of sequence similarity to PKCs. The bacterially expressed catalytic domain of PKD efficiently phosphorylated the exogenous peptide substrate syntide-2 in serine but did not catalyse significant phosphorylation of a variety of other substrates utilised by PKCs and other major second messenger regulated kinases. PKD expressed in COS cells showed syntide-2 kinase activity that was stimulated by phorbol esters in the presence of phospholipids. We propose that PKD may be a novel component in the transduction of diacylglycerol and phorbol ester signals.  相似文献   

16.
The diacylglycerol kinases (DGK) regulate diacylglycerol-based signals by phosphorylating this key lipid intermediate to phosphatidic acid. Here, we have investigated the spatial and temporal regulation of diacylglycerol kinase zeta (DGK zeta) in living Jurkat T-cells expressing a muscarinic type I receptor. Using real time confocal videomicroscopy, we show the rapid translocation of a green fluorescent protein-tagged enzyme from the cytosol to the plasma membrane following receptor stimulation. The generation of a panel of truncations, deletions, and point mutations of the enzyme allowed us to examine the requirements of the different structural motifs for both activity and receptor-regulated translocation. The data show that DGK zeta has strict requirements for intact zinc fingers and the conserved catalytic domain for full enzymatic activity. Protein kinase C-driven myristoylated alanine-rich C kinase substrate domain phosphorylation and intact zinc fingers are in turn essential for plasma membrane translocation. DGK zeta does not translocate to the membrane following stimulation of the endogenous T-cell receptor, and our data demonstrate that the specificity in terms of receptor response is provided by the regulatory motifs present at the C-terminal domain of the protein. This is the first report that shows in vivo DGK zeta translocation in response to agonist stimulation and establishes the role of the different domains in enzymatic activity and the selectivity of the response to receptors.  相似文献   

17.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

18.
Protein kinase D (PKD) regulates the activity of the L-type calcium channel in rat ventricular cardiomyocytes. However, the functional target residues of PKD on the L-type calcium channel remain to be identified. Our aim was to identify the functional phosphorylation sites of PKD on the human L-type calcium channel. The pore subunit of the human CaV1.2 (hCaV1.2) was stably expressed in HEK293 cells. Both the expression of a dominant-negative mutant of PKD and the mutation of serine 1884 but not serine 1930, putative targets of PKD, strongly reduced L-type calcium currents and single channel activity without affecting the channel's expression at the plasma membrane. Our results suggest that serine 1884 is essential for the regulation of hCaV1.2 by PKD.  相似文献   

19.
The protein kinase D (PKD) family consists of three serine/threonine protein kinases: PKC mu/PKD, PKD2, and PKC nu/PKD3. While PKD has been the focus of most studies to date, no information is available on the intracellular distribution of PKD2. Consequently, we examined the mechanism that regulates its intracellular distribution in human pancreatic carcinoma Panc-1 cells. Analysis of the intracellular steady-state distribution of fluorescent-tagged PKD2 in unstimulated cells indicated that this kinase is predominantly cytoplasmic. Cell stimulation with the G protein-coupled receptor agonist neurotensin induced a rapid and reversible plasma membrane translocation of PKD2 by a mechanism that requires PKC activity. In contrast to the other PKD isoenzymes, PKD2 activation did not induce its redistribution from the cytoplasm to the nucleus. Thus, this study demonstrates that the regulation of the distribution of PKD2 is distinct from other PKD isoenzymes, and suggests that the differential spatio-temporal localization of these signaling molecules regulates their specific signaling properties.  相似文献   

20.
Ligand binding to plasma membrane receptors initiates a series of events culminating in a variety of changes in cellular phenotypes. Although numerous publications have documented the activation/inactivation of signalling molecules following receptor binding, relatively few investigations have focused on the cellular compartment responsible for either initiating or selecting the particular pathway that mediates the response. Specifically, does receptor signalling occur only at the plasma membrane; is signalling dependent upon the location of defined endosome populations; or are components of both plasma membrane and endosomal activity operative depending upon the particular signalling pathway or cell type? This review addresses aspects of these questions by discussing the evidence supporting or contrasting the interplay between the endocytic and signalling systems for a subset of tyrosine kinase, serine/threonine kinase and G-protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号