首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of chloroacetaldehyde with adenosine 3′,5′-cyclic phosphate, and with several analogs modified at C8 of the purine ring or C5, of the sugar, lead to the corresponding 1,N6-etheno derivativesd. Similar reactions using other 2-bromoaldehydes or phenacyl bromide give 1,N6-ethenonucleotides substituted at the α- or β-positions of the etheno bridge respectively. The ability of these compounds to activate the protein kinases from rabbit muscle and calf brain has been evaluated over a wide range of concentrations. While no derivative proved to be more active than adenosine 3′,5′-cyclic phosphate itself using the enzyme from rabbit muscle, a wide spectrum of activities was found using that from calf brain.  相似文献   

2.
The role of adenosine 3′:5′-cyclic monophosphate in the cortisol-mediated induction of HeLa 65 alkaline phosphatase was investigated. Although growth of these cells with 0.5–1.0 mmN6,O2′-dibutyryl adenosine 3′:5′-cyclic monophosphate induces a 5- to 8-fold increase in cellular phosphatase activity after 72 hr, neither cAMP nor theophylline induce at concentrations up to 1 mm. Sodium butyrate induces the enzyme as well as dibutyryl cAMP. Moreover, induction kinetics show sodium butyrate to be a more efficient inducer than dibutyryl cAMP, inducing activity as quickly as cortisol. This suggests that the butyric acid cleaved from dibutyryl cAMP by HeLa cells is the mediator of induction when the cyclic nucleotide derivative is used.  相似文献   

3.
Oligoadenylates can be analyzed according to the type of 3′-terminus (AnA, AnAp, and AnA > p, oligoadenylates that have at the 3′-terminus no phosphate, a 2′(3′)-monophosphate, and a 2′,3′-cyclic phosphate respectively) by hplc on RPC-5 support using a novel dual-column technique. The first column separates AnAp plus AnA > p from AnA, and at the start of the second column a layer of bacterial alkaline phosphatase enzyme converts the AnAp into AnA. Hence this AnA emerges separately from the original AnA and from the AnA > p. The technique can be used to analyze a three-component mixture for a single chain length or a mixture of AnAp and AnA > p of mixed chain lengths (n = 3 to 7). The presence of poly(U) does not interfere with the analysis.  相似文献   

4.
Analogs of adenosine-3′,5′-cyclic phosphate (cAMP) modified in positions 2 (Cl, Br, SCH3) and 2′ (2,4-dinitrophenyl) and doubly modified in positions 1 and 2 (N1O and Cl), 2 and 2′ (Cl and 2,4-dinitrophenyl), have been synthesized by convenient methods. These derivatives have been examined as alternative activators of cAMP-dependent protein kinase isolated from bovine muscle and as alternative substrates for a cyclic phosphodiesterase from bovine heart. All analogs activated the kinase, most of them being more effective than cAMP. All were degraded by the diesterase, several at lower rates.  相似文献   

5.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

6.
Formycin B, a pyrazolo(4,3-d)pyrimidine C-nucleoside, inhibited the growth of Leishmaniadonovani promastigotes in culture with an ED90 of 0.2 μg/ml. Promastigotes incubated for 24 hrs with Formycin B at 10 μg/ml were found to convert it to the ribonucleotide, formycin B 5′-monophosphate. The parasites were also capable of aminating formycin B 5′-monophosphate as evidenced by the appearance of formycin A di- and triphosphate. The RNA contained the formycin A moiety in 3′,5′-polynucleotide linkage. Succino-AMP synthetase from these parasites was able to use formycin B 5′-monophosphate as an alternate-substrate with a K'm of 26 μM and a V'm of about 1% the V'm IMP. Formycin B 5′-monophosphate was also a substrate for mammalian succino-AMP synthetase with a Vm' of 40% the Vm' of IMP.  相似文献   

7.
Abstract

A series of 5′-halogenated formycins, including the chloro-, bromo- and iodo- derivatives, were synthesized. These compounds are competitive inhibitors of 5′-deoxy-5′-methylthioadenosine phosphorylase (MTAPase) with Ki values in the range of 10?7 M, making them the most potent inhibitors of MTAPase reported to date. These compounds protect cells from the growth-inhibitory action of 5′-halogenated adenosines, which must be activated by MTAPase. The syntheses of 5′-halogenated formycin B derivatives, which inhibit purine nucleoside phosphorylase, are also described.  相似文献   

8.
A detailed 1H 220-MHz n.m.r. study of 9-(β-d-xylofuranosyl)adenine 3′,5′-cyclic monophosphate (3′,5′-xylo-cAMP, 1) and 9-(?-d-arabinofuranosyl)adenine 2′,5′-cyclic monophosphate (2′,5′-ara-cAMP, 2) in D2O solution is described. The sugar-ring conformations in 1 and 2 are shown to be 3E and 2E, respectively, and the phosphate rings are in a chair form. An unusual 4JP,H coupling of 2.4 Hz is observed between H-4′ and phosphorus in 1 and a vicinal JP,H of 30.8 Hz between H-5′ and phosphorus in 2. This latter coupling verifies a similar value found previously in the ara-cytidine analog of 2. A comparison of the conformational properties of cyclic nucleotides having fused phosphate and sugar rings has been made, together with an assessment of the use of the Karplus constants in such ring-systems.  相似文献   

9.
Livers from fed male rats were perfused in vitro with O2′-monobutyryl guanosine 3′,5′-cyclic monophosphate. The output of triglyceride was reduced, while output of ketone bodies and glucose was stimulated by 10?4M monobutyryl guanosine 3′,5′-cyclic monophosphate. No effect was observed with 10?5 M nucleotide. Monobutyryl guanosine 3′,5′-cyclic monophosphate did not affect uptake of free fatty acids. In these respects, monobutyryl guanosine 3′,5′-cyclic monophosphate mimics the effects of dibutyryl adenosine 3′,5′-cyclic monophosphate, although the guanylic nucleotide seems to be less potent than the adenosine 3′,5′-cyclic monophosphate derivative.  相似文献   

10.
A method is described for the determination of 5′-terminal methylated (cap) structures in unlabeled mRNA based on oxidation with NaIO4, reduction with NaB[3H]4, cleavage with P1 nuclease, and separation on a strong anion-exchange resin by high-performance liquid chromatography (hplc). Model compounds (cap 1 dinucleotides) were used to show that no structural alteration other than cleavage of the ribose ring of 7-methylguanosine occurred under the conditions used for oxidation and reduction. It was shown that the enzyme tobacco acid pyrophosphatase could be used to cleave cap dinucleotides containing unmodified or ring-opened ribose moieties and could also be used to release [3H]pm7G′ from NaB[3H]4-labeled rabbit globin mRNA. All five known cap 1 dinucleotides were resolved by hplc. The cap of rabbit globin mRNA was identified as m7Gpppm6Am, in agreement with other methods of determination.  相似文献   

11.
Cyclic nucleotide phosphodiesterase enzymes (PDEs) have functions in regulating the levels of intracellular second messengers, 3′, 5′-cyclic adenosine monophosphate (cAMP) and 3′, 5′-cyclic guanosine monophosphate (cGMP), via hydrolysis and decomposing mechanisms in cells. They take essential roles in modulating various cellular activities such as memory and smooth muscle functions. PDE type 5 (PDE5) inhibitors enhance the vasodilatory effects of cGMP in the corpus cavernosum and they are used to treat erectile dysfunction. Patch clamp experiments showed that the IC50 values of the human ether-à-go-go-related gene (hERG1) potassium (K) ion channel blocking affinity of PDE5 inhibitors sildenafil, vardenafil, and tadalafil as 33, 12, and 100 μM, respectively. hERG1 channel is responsible for the regulation of the action potential of human ventricular myocyte by contributing the rapid component of delayed rectifier K+ current (IKr) component of the cardiac action potential. In this work, interaction patterns and binding affinity predictions of selected PDE5 inhibitors against the hERG1 channel are studied. It is attempted to develop PDE5 inhibitor analogs with lower binding affinity to hERG1 ion channel while keeping their pharmacological activity against their principal target PDE5 using in silico methods. Based on detailed analyses of docking poses and predicted interaction energies, novel analogs of PDE5 inhibitors with lower predicted binding affinity to hERG1 channels without loosing their principal target activity were proposed. Moreover, molecular dynamics (MD) simulations and post-processing MD analyses (i.e. Molecular Mechanics/Generalized Born Surface Area calculations) were performed. Detailed analysis of molecular simulations helped us to better understand the PDE5 inhibitor–target binding interactions in the atomic level. Results of this study can be useful for designing of novel and safe PDE5 inhibitors with enhanced activity and other tailored properties.  相似文献   

12.
Nicotinamides of benzyl-substituted 4-aminopiperidines and their seven-membered analogs of generic structure 2 and 2′ have been discovered as potent and selective SST5 antagonists. The activity (Ki) ranges from 2.4 to 436 nM. Most compounds exhibit decent physicochemical properties and follow a clear SAR pattern. Interestingly enough, the receptor is strongly enantiodiscriminating and binds in the amino-azepane-series only the (R)-enantiomer.  相似文献   

13.
Based on a hypothesis that an intramolecular hydrogen bond was present in our lead series of picolinamide mGlu5 NAMs, we reasoned that an inactive nicotinamide series could be modified through introduction of a fused heterocyclic core to generate potent mGlu5 NAMs. In this Letter, we describe the synthesis and evaluation of compounds that demonstrate the viability of that approach. Selected analogs were profiled in a variety of in vitro assays, and two compounds were evaluated in rat pharmacokinetic studies and a mouse model of obsessive-compulsive disorder. Ancillary pharmacology screening revealed that members of this series exhibited moderate inhibition of the dopamine transporter (DAT), and SAR was developed that expanded the selectivity for mGlu5 versus DAT.  相似文献   

14.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

15.
16.
A comparison has been made between the capacity to hydrolyse 2′,3′-cyclic adenosine monophosphate and 3′,5′-cyclic adenosine monophosphate in subcellular fractions of normal and neoplastic (lymphosarcoma) spleen of C57BL mice. The effect of X-irradiation on these activities was tested. Subcellular fractionation of normal and lymphosarcoma spleen points to a different overall localization of the enzymes. The 2′,3′-cyclic nucleotide phosphodiesterase (2′,3′-cAMPase) has its highest specific activity in the particulate fractions of the cell, while the data on 3′,5′-cyclic nucleotide phosphodiesterase (3′,5′-cAMPase) show the highest activity in the soluble fraction. The 2′,3′-cAMPase activity is higher in the tumor as compared to the normal tissue, while the opposite holds for 3′,5′-cAMPase. Total body irradiation of normal mice with a dose of 600 rads of X-rays, results in a clear drop in 2′,3′-cAMPase 48 hours after the exposure. The 3′,5′-cAMPase is hardly affected at this time. Neither imidazol nor Mg++ has any influence on the 2′,3′-cAMPase. The pH optimum for 3′,5′-cAMPase and 2′,3′-cAMPase appears to be 7.7 and 6.2 respectively. This report suggests a no-identity of the two enzymes in mouse spleen, a situation different from that found in certain plants.  相似文献   

17.
The relationship between diuretic hormone (DH) and adenosine 3′:5′-cyclic monophosphate (cyclic AMP) in Rhodnius Malpighian tubules has been investigated. Direct measurement of cyclic AMP levels during stimulation of the tubules by DH supports the view that cyclic AMP is a ‘second messenger’ in this system.Also, the activity of endogenous cyclic AMP phosphodiesterase and its inhibition by theophylline has been investigated briefly. Certain other 3′:5′-cyclic nucleotides have been examined for diuretic activity on Rhodnius Malpighian tubules.  相似文献   

18.
《Plant science》1987,50(2):117-123
A cyclic nucleotide-binding phosphatase was purified from silver beet leaves by a procedure involving chromatography on CM-Sepharose CL-6B, DEAE-Sephacel, casein-Sepharose 4B, concanavalin A-agarose and Ultrogel AcA44. The enzyme is eluted from concanavalin A-agarose by 0.5 M α-methylglucoside at high ionic strength. The enzyme is monomeric, having a subunit molecular weight (Mr) of 28 000; the native Mr is 31 000 as determined from gel filtration. The enzyme catalyzes the hydrolysis of a range of phosphomonoesters including various nucleotides and O-phosphotyrosine but not O-phosphoserine or O-phosphothreonine. The leaf phosphatase is competitively inhited by guanosine 3′ : 5′-cyclic monphosphate (cGMP) and adenosine 3′ : 5′-cyclic monophosphate (cAMP) (Ki-values: 0.4 μM and 3.3 μM, respectively). The leaf phosphotase has the highest affinity for cGMP yet reported for a plant protein.  相似文献   

19.
Formycin A augments insulin release evoked by glucose (5.6 mmor more), this effect not being rapidly reversible. The mechanism responsible for the insulinotropic action of formycin A was investigated in isolated pancreatic islets. It could not be ascribed to facilitation of glucose metabolism. On the contrary, formycin A inhibited glucose oxidation, lowered ATP content, and impaired glucose-stimulated protein biosynthesis. The insulinotropic action of formycin A was apparently attributable to its conversion to formycin A 5′-triphosphate, both this process and the secretory response to formycin A being abolished by the inhibitor of adenosine kinase 5-iodotubercidin. In agreement with the latter view, adenosine receptor antagonists such as 8-cyclopentyl-1,3-dipropylxanthine and 3,7-dimethyl-1-propargylxanthine failed to suppress and, instead, augmented the insulinotropic action of formycin A. Unexpectedly, however, formycin A failed to decrease86Rb efflux, this coinciding with a low efficiency of formycin A 5′-triphosphate to inhibit KATP-channel activity in excised membranes and with the fact that formycin A increased gliben-clamide-stimulated insulin release. The secretory response to formycin A represented a Ca2+-dependent process suppressed in the absence of extracellular Ca2+or presence of verapamil and associated with an increased net uptake of45Ca. Nevertheless, the view that formycin A exerts any major effect upon intracellular Ca2+redistribution, protein kinase C activity, or cyclic AMP net production also met with objections such as the minor secretory effect of formycin A in islets exposed to a high concentration of K+in the presence of a diazoxide analog, the resistance of formycin A insulinotropic action to bisindolylmaleimide, the poor increase of cyclic AMP content in formycin A-stimulated islets, and the pronounced enhancement by forskolin or theophylline of insulin release from islets exposed to formycin A. It is concluded, therefore, that the mechanism of action of formycin A in the pancreatic β-cell remains to be elucidated.  相似文献   

20.
A photosensitive, radioactive analogue of cyclic adenosine monophosphate, 8-azido-adenosine 3′,5′-[32P]monophosphate (8-N3-cyclic AMP), was used to label the cyclic AMP binding proteins of Dictyostelium discoideum. During development cytosolic proteins appear which are specifically labeled by the photoaffinity agent. The proteins are developmentally regulated since they are only found in starved, developing cells. Unlabeled cyclic AMP competes specifically with the labeled analogue for protein binding sites in contrast to unlabeled 5′-AMP which does not compete. A mutant which develops spores but is deficient in stalk cell production produces a different set of cyclic AMP binding proteins from the parent strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号