首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies on human cell hybrids between HeLa and normal human fibroblasts have indicated that the tumorigenicy may be controlled by a putative tumor suppressor gene on chromosome 11. We previously demonstrated a twofold increase in glucose uptake with a reduced Km by tumorigenic HeLa cell hybrids which expressed a highly glycosylated GLUT1. In this study, we reported that a tumorigenic cell hybrid, CGL4, also expressed a glucose transporter isoform, GLUT3, that was undetectable in nontumorigenic CGL1 cells. The expression of GLUT3 together with GLUT1 of 70 kDa was also evident in three gamma-ray-induced tumorigenic clones isolated from CGL1 cells, while control nontumorigenic irradiated cells expressed 50 kDa GLUT1 alone. In accordance with this, GLUT3 mRNA was specifically expressed in tumorigenic cell hybrids. To examine the role of GLUT3, clones which stably overexpress GLUT3 were developed from both CGL1 and CGL4 cells. In these transfectants, the affinity for 2-deoxyglucose markedly increased, in parallel with the amount of expressed GLUT3 irrespective of its N-glycosylation state. These results suggest that the enhanced GLUT3 expression in HeLa cell hybrids associated with the tumorigenic phenotypes may account for the increased affinity for 2-deoxyglucose. Possible roles of the putative tumor suppressor in control of gene expression and glucose uptake is discussed.  相似文献   

2.
Summary Limited lifespan human diploid fibroblast cells have been fused with the HeLa derived cell line HEB 7A which possesses transformed growth characteristics and unlimited division potential. HEB 7A expresses keratin intermediate filaments, while the fibroblast cells express only vimentin intermediate filaments. Independently arising clones of hybrids were examined for the presence of keratin by indirect immunofluorescence. Of 11 limited lifespan hybrids, all were keratin negative and possessed the growth characteristics of the fibroblast parent. Of 8 transformed hybrids, 6 arising early after fusion and 2 arising late, all were keratin-positive and simultaneously expressed the transformed growth characteristics of loss of density dependent growth inhibition, low serum dependence, and anchorage independence. It is concluded that the growth properties of these hybrids are associated with the type of intermediate filament expressed. The intermediate filament expression is therefore a marker of proliferative potential in these hybrids. This work was supported by grant no. AG 02664 from NIA (to C.L.B.) and by grant nos. 1R01 HD 18129-01 from NIH and PCM83-09068 from NSF (to R.H.S.). Editor’s Statement The tight correlation between the expression of the intermediate filaments of the immortal parent in hybrids of limited lifespan fibroblasts and HeLa cells with the transformed phenotype is of interest. It may offer important clues to the mechanism involved in cellular senescence. Gordon H. Sato  相似文献   

3.
Three series of neuroblastoma X fibroblast hybrid clones were isolated from crosses between mouse or human fibroblasts and mouse or human neuroblastoma cell lines by virus-mediated cell fusion. The expression of 14-3-2 protein (an acidic protein specific to neurons) and steroid sulfatase activity was studied in parental and hybrid cell lines. Steroid sulfatase was extinguished in hybrids when only one parent expressed the enzyme, but was expressed in one hybrid combination in which both parents expressed the enzyme. The neuron-specific 14-3-2 protein, on the other hand, continued to be expressed in all three series of neuroblastoma x fibroblast hybrids. In most cases where these pheno-types were expressed, they also exhibited temporal modulation; that is, specific activity is low during logarithmic growth and increases markedly during stationary phase. The glial-specific protein S-100 is absent from all parents and hybrids. The results are discussed in terms of mechanisms of regulation of differentiated phenotypes in mammalian cells.  相似文献   

4.
The regulation of both muscle and adrenal functions was examined in heterokaryons formed by fusing differentiated chick skeletal myocytes to Y1 mouse adrenal cells. Mouse fast skeletal myosin light chain one (LC1) synthesis was induced and acetylcholine receptor expression was maintained at muscle control levels. Steroid secretion, although reduced compared with Y1 × Y1 adrenal homokaryon control fusions, was nonetheless maintained at relatively high levels. Steroid secretion in the myocyte × adrenal heterokaryons was constitutively expressed and was not increased by exposure to either adrenocorticotrophic hormone or db-cAMP. The population of heterokaryons was thus simultaneously expressing both muscle and adrenal functions. The steroid secretion in these heterokaryons was compared to that in heterokaryons formed by fusing Y1 adrenal cells to either chick skin fibroblasts or rat C6 glial cells. Both of these sets of heterokaryons exhibited low baseline levels of steroid secretion that were inducible to control values by ACTH. These results extend previous observations showing that heterokaryons are functionally very different than cell hybrids, and exhibit a variety of phenotypic interactions. Although fibroblasts suppress muscle functions in heterokaryons, they are permissive for adrenal functions. C6 glial cells are permissive for both adrenal and muscle functions, and along with several other neurectodermal derivatives contain an inducible skeletal myosin light chain gene. Finally, myocytes and Y1 adrenal cells are mutually permissive for their differentiated functions, and Y1 adrenal cells contain an inducible myosin light chain gene.  相似文献   

5.
The intermediate filament protein composition in glial cells of goldfish optic nerve differs from that found in glial cells of the goldfish spinal cord and brain. Brain and spinal cord glial cells contain glial fibrillary acidic protein (GFAP), whereas glial cells in the optic nerve contain ON3. The ON3 protein of the goldfish optic nerve was recently identified as the goldfish equivalent to the mammalian type II keratin 8 protein. In addition to the ON3 protein, the goldfish optic nerve also contains a 48-kDa protein. Immunoblotting experiments suggest that this protein is equivalent to the mammalian type I keratin 18 protein, which typically pairs with keratin 8 to form filaments. We show that these proteins are not specific to the optic nerve. The ON3 and 48-kDa proteins of the goldfish optic nerve share common antigenic properties with the predominant keratin pair expressed in the goldfish liver. These proteins are also expressed at low levels in the goldfish brain and spinal cord. In addition RNase protection assays and Northern blots indicate that the mRNA for the ON3 protein in optic nerve is identical to the message found in other goldfish tissues. The expression of ON3 was also examined in cultured glial cells from goldfish spinal cord and optic nerve and cultured fibroblast cells. Analysis of intermediate filament protein expression in cultured glial cells taken from goldfish spinal cord demonstrated the absence of GFAP in these cells and the expression of ON3. This protein was also the predominant intermediate filament protein of cultured optic nerve glial cells and fibroblasts. The differences in the expression of intermediate filament proteins in mammals and lower vertebrates are discussed. In addition, we discuss how the expression of a simple epithelial keratin pair in glial cells of the goldfish optic nerve may be associated with this system's capacity for continuous growth and regeneration.  相似文献   

6.
7.
Expression of human hepatic genes in somatic cell hybrids   总被引:4,自引:0,他引:4  
Four diploid human cell types (lymphocytes, fibroblasts, amniotic fluid cells, and hepatocytes) were fused to mouse hepatoma cells, HH. HH synthesized and secreted several liver-specific gene products including albumin, transferrin, and alpha-fetoprotein. The resulting interspecific hybrids were compared to determine whether or not the pattern of human hepatic gene expression was similar when these various cells were fused with the mouse hepatoma line. The expression of six human hepatic genes was examined, including albumin, alpha-fetoprotein, ceruloplasmin, transferrin, alpha-1-antitrypsin, and haptoglobin. Albumin was most frequently expressed while alpha-fetoprotein was not detected in any of the hybrids studied. The patterns of expression of human serum proteins differed between the hybrid series. Hybrids derived from human fibroblasts produced primarily albumin, while those derived from lymphoblastoid cells and amniocytes had a higher frequency of clones secreting alpha-1-antitrypsin. The findings reported here suggest that the frequency of hybrid clones expressing human hepatic gene products and the array of proteins produced are influenced by the histogenetic state of the human parental cell type.  相似文献   

8.
Hybrids were isolated between rat glial cells and mouse fibroblasts. Micro complement (C′) fixation was used to assay S100, a highly acidic protein specific for nervous tissues. The glial cells contain large amounts of S100. Extracts of the fibroblasts contain some C′ fixing material which is detected only at very high protein concentrations and which fixes C′ only weakly. The identity of this material is not known. The hybrids contain some C′ fixing material, but the concentrations of protein necessary to reach the point of antigen-antibody equivalence is ten times greater with an extract of hybrids than with an extract of glial cells. This increase in the concentration of protein is associated with a decrease in the amount of C′ fixed. The possible significance of the C′ fixing material in the hybrids is discussed.  相似文献   

9.

Background

While neurosphere- as well as xenograft tumor-initiating cells have been identified in gliomas, the resemblance between glioma cells and neural stem/progenitor cells as well as the prognostic value of stem/progenitor cell marker expression in glioma are poorly clarified.

Methodology/Principal Findings

Viable glioma cells were characterized for surface marker expression along the glial genesis hierarchy. Six low-grade and 17 high-grade glioma specimens were flow-cytometrically analyzed for markers characteristics of stem cells (CD133); glial progenitors (PDGFRα, A2B5, O4, and CD44); and late oligodendrocyte progenitors (O1). In parallel, the expression of glial fibrillary acidic protein (GFAP), synaptophysin and neuron-specific enolase (NSE) was immunohistochemically analyzed in fixed tissue specimens. Irrespective of the grade and morphological diagnosis of gliomas, glioma cells concomitantly expressed PDGFRα, A2B5, O4, CD44 and GFAP. In contrast, O1 was weakly expressed in all low-grade and the majority of high-grade glioma specimens analyzed. Co-expression of neuronal markers was observed in all high-grade, but not low-grade, glioma specimens analyzed. The rare CD133 expressing cells in low-grade glioma specimens typically co-expressed vessel endothelial marker CD31. In contrast, distinct CD133 expression profiles in up to 90% of CD45-negative glioma cells were observed in 12 of the 17 high-grade glioma specimens and the majority of these CD133 expressing cells were CD31 negative. The CD133 expression correlates inversely with length of patient survival. Surprisingly, cytogenetic analysis showed that gliomas contained normal and abnormal cell karyotypes with hitherto indistinguishable phenotype.

Conclusions/Significance

This study constitutes an important step towards clarification of lineage commitment and differentiation blockage of glioma cells. Our data suggest that glioma cells may resemble expansion of glial lineage progenitor cells with compromised differentiation capacity downstream of A2B5 and O4 expression. The concurrent expression of neuronal markers demonstrates that high-grade glioma cells are endowed with multi-lineage differentiation potential in vivo. Importantly, enhanced CD133 expression marks a poor prognosis in gliomas.  相似文献   

10.
Rat glioma cells of clone C6 were hybridized in vitro with mouse L cells of clone A9 or with freshly isolated mouse macrophages, and the hybrids were assayed for glial cell functions. C6 cells expressed high levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP; EC 3.1.4.37), β-hydroxybutyrate dehydrogenase (HBDH; EC 1.1.1.30), glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8), and inducibility of GPDH by hydrocortisone (HC). A9 cells and macrophages had very low activities of these functions. Hybrids between C6 and A9 or between C6 and macrophages had greatly reduced activities of these functions, but the hybrids expressed significantly higher activities than the non-glial parent. This incomplete extinction was not due to fusion of two glioma cells with one L cell or macrophage. The difference in GPDH activity in the hybrids as compared with the non-glial parent was due to incomplete shut-off of GPDH of the glial parent, and not to an increase in GPDH production by the non-glial genome.  相似文献   

11.
Rat glioma cells of clone C6 were hybridized in vitro with mouse L cells of clone A9 or with freshly isolated mouse macrophages, and the hybrids were assayed for glial cell functions. C6 cells expressed high levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP; EC 3.1.4.37), β-hydroxybutyrate dehydrogenase (HBDH; EC 1.1.1.30), glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8), and inducibility of GPDH by hydrocortisone (HC). A9 cells and macrophages had very low activities of these functions. Hybrids between C6 and A9 or between C6 and macrophages had greatly reduced activities of these functions, but the hybrids expressed significantly higher activities than the non-glial parent. This incomplete extinction was not due to fusion of two glioma cells with one L cell or macrophage. The difference in GPDH activity in the hybrids as compared with the non-glial parent was due to incomplete shut-off of GPDH of the glial parent, and not to an increase in GPDH production by the non-glial genome.  相似文献   

12.
The expression of the two major isozyme forms of hexosaminidase (EC 3.2.1.30), hesoxaminidase A and hexosaminidase B, has been examined. The parental cells and/or cellular components of parental cells are individually fused using inactivated Sendai virus with the aid of a micromanipulator. The progeny cells produced from such hybrids are subjected to a microenzymatic assay which allows measurements at the single cell level. The lysosomal-deficient cells used in this study are Tay-Sachs and Sandhoff fibroblasts, and the normal cells used are WI-38 (fetal lung fibroblasts), amniotic fluid cells (GM 473), and JASD3 (normal human foreskin). The results show that the ratio of cell components which are fused to form the experimental cell affects the percentage of hexosaminidase A expressed in the progeny cells. Furthermore, our results imply the presence of a “factor” in the Sandhoff cell's cytoplasm which, together with the Tay-Sachs nucleus, is necessary for hexosaminidase A expression in the experimental cell's progeny.  相似文献   

13.
Although peroxisomes are ubiquitous, differences in the number of organelles and in the expression of associated metabolic activities are observed, depending on the cell type. To investigate the control of peroxisomal activity in connection with cell differentiation, we constructed hybrids between two types of cells whose histogenetic origins dictate significant differences in peroxisomal activities: hepatoma cells and fibroblasts, with high and low expression, respectively, of peroxisomal functions. In these hybrids, extinction of the elevated activities that characterize liver cells is observed, in parallel with the well-documented extinction of differentiated functions. This suggests the existence in fibroblasts of a negative trans-acting regulation.  相似文献   

14.
The disadvantages of using human cultured cells for biochemical and genetic studies are their limited lifespan in vitro and their lack of chemical selection markers. These problems are now overcome by transfecting human cultured fibroblasts with the pSV3-gpt and pSV3-neo plasmid DNA which carry genes coding for the immortalizing SV40 large T-antigen and dominant selection markers. Transformed human fibroblasts were obtained at a frequency of about 10(-5) with both selection systems. These transformed cells showed a twofold increase in growth rate and three to tenfold increase in cell number at confluence. The improved growth characteristics were associated with the expression of the SV40 T-antigen detected with immunoprecipitation. These cell lines also changed from their usual spindle shapes to an epithelioid morphology characteristic of transformed cells. From 60 to 100% of the cells transfected with pSV3 plasmid DNA demonstrated numerical and structural abnormalities in their karyotypes. Cells transfected with DNA from a similar plasmid, pSV2-neo, which differed from the pSV3-neo plasmid only by missing the sequence encoding the complete early region of SV40, neither expressed T-antigen nor showed any change in morphology, improvement in growth characteristics or abnormalities in karyotype. However, they were still selectable with the aminoglycoside G-418. Therefore, by appropriate choice of vector plasmids, dominant selection markers and improved growth characteristics can be imparted separately or simultaneously to human fibroblasts. The morphological, biochemical and chromosomal changes resulting from such transformations must be recognized in using this approach for biochemical and genetic studies.  相似文献   

15.
Green fluorescent protein (GFP) gene was transfected and expressed in murine embryonic stem (ES) cells under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Stably transfected cells were characterized by immunohistochemistry and by fluorescence microscopy. Cells containing GFP were differentiated to Type I and Type II astrocytes after induction by all-trans retinoic acid. Differentiated cells were expressed GFP and visualized by fluorescence microscopy. Differentiated cells expressed GFP were correlated with the expression of GFAP and morphological change. It demonstrates that the cell line expressed GFP can be used to trace the morphological changes of astrocytes during differentiation, and further for the isolation of astrocytes from the mixed cells differentiated from ES cell.  相似文献   

16.
Somatic cell hybrids between multipotent mouse teratoma cells and mouse fibroblasts were established and isolated. The hybrid cells possess one chromosome set of each parental type and express major histocompatibility antigens of both strains of mice from which the parental cells were derived. Upon inoculation into F1 mice, hybrid cells produced tumors which were typical fibrosarcomas as were the tumors produced by the fibroblastic parental cell line. None of the well differentiated tissue types characteristic of the teratoma parent cell tumors were expressed in the hybrid tumors. The hybrid tumors possessed the majority of the chromosomes of the two parental cells; however, the modal numbers were slightly reduced in comparison with those of the cell populations inoculated. The possible role of ‘genic balance’ in phenotypic expression of cell hybrids is discussed.  相似文献   

17.
18.
19.
20.
Somatic cell hybrids between either normal human fibroblasts, phenotypically normal mouse fibroblasts or mouse peritoneal macrophages and HT1080 human diploid fibrosarcoma cells were studied for their ability to form tumors in nude mice. The results of this study indicate that tumorigenic behavior is expressed as a dominant trait in both human-human and mouse-human hybrid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号