首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yields in molecules per 100 eV for active-site and sulphydryl loss from glyceraldehyde-3-phosphate dehydrogenase have been determined in nitrous-oxide-saturated, aerated and argon-saturated solutions. Molecular hydrogen peroxide produces a sulphenic acid product, which can be repaired by post-irradiation treatment with dithiothreitol. Comparison of the yields under various conditions showed that in aerated solutions both .OH and .O2-radicals inactivated the enzyme with an efficiency of about 26 per cent. However, the efficiency of .OH in air-free solutions was less, and inactivation by .H and eaq- did not appear to be appreciable. There is a correlation between SH loss and loss of active sites.  相似文献   

2.
Beta-structure in glyceraldehyde-3-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

3.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

4.
Yeast glyceraldehyde-3-phosphate dehydrogenase (glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) immobilized on CNBr-activated Sepharose 4-B has been subjected to dissociation to obtain matrix-bound dimeric species of the enzyme. Hybridization was then performed using soluble glyceraldehyde-3-phosphate dehydrogenase isolated from rat skeletal muscle. Immobilized hybrid tetramers thus obtained were demonstrated to exhibit two distinct pH-optima of activity characteristic of the yeast and muscle enzymes, respectively. The results indicate that under appropriate conditions the activity of each of the dimers composing the immobilized hybrid tetramer can be studied separately.  相似文献   

5.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

6.
The spontaneous inactivation of yeast glyceraldehyde-3-phosphate dehydrogenase was found to fit a simple two-state model at pH 8.5 and 25 degrees. The first step is a relatively rapid dissociation of the tetramer to dimers with the equilibrium largely in favor of the tetramer. In the absence of NAD+ the dimer inactivates irreversibly. The apoenzyme is quite stable with a half-life for complete activity loss proportional to the square root of the enzyme concentration. Perturbances of the protein structure (by pH, ionic strength, and specific salts), which have no effect on the tetrameric state of the molecule, result in an alteration of the cooperativity of NAD+ binding, the reactivity of the active-site sulfhydryl group, and the catalytic activity of the enzyme. Covalent modification of two of the four active-site sulfhydryl groups has profound effects on the enzymic activity which are mediated by changes in the subunit interactions. Sedimentation analysis and hybridization studies indicate that the interaction between subunits remains strong after covalent modification. Under normal physiological and equilibrium dialysis conditions the protein is a tetramer. Equilibrium dialysis studies of NAD+ binding to the enzyme at pH 8.5 and 25 degrees reveal a mixed cooperativity pattern. A model consistent with these observations and the observed half-of-the-sites reactivity is that of ligand induced sequential conformational changes which are transferred across strongly interacting subunit domains. Methods for distinguishing negatively cooperative binding patterns from mixtures of denatured enzyme and multiple species are discussed.  相似文献   

7.
Oxidation of the essential cysteins of glyceraldehyde-3-phosphate dehydrogenase into the sulfenic acid derivatives was observed in the presence of ascorbate, resulting in a decrease in the dehydrogenase activity and the appearance of the acylphosphatase activity. The oxidation was promoted by EDTA, NAD(+), and phosphate, and blocked in the presence of deferoxamine. The ascorbate-induced oxidation was suppressed in the presence of catalase, suggesting the accumulation of hydrogen peroxide in the conditions employed. The data indicate the metal-mediated mechanism of the oxidation due to the presence of metal traces in the reaction medium. Physiological importance of the mildly oxidized GAPDH is discussed in terms of its ability to uncouple glycolysis and to decrease the ATP level in the cell.  相似文献   

8.
9.
Summary Although only one gene is known to be functional, numerous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) related sequences are scattered throughoutMus musculus andRattus rattus genomes. In this report we show that: (1) GAPDH pseudogenes are repeated to comparable extents, at least 400 copies, in 12 other Muridae species; (2) the complete, or nearly so, sequence of GAPDH messenger RNA is amplified, and a high proportion, if not all of these copies, are intronless; (3) GAPDH pseudogenes are preferentially located in heavily methylated and DNAse I-insensitive regions of chromatin; and (4) the presence of atypical GAPDH-related mRNAs in different cellular contexts raises the possibility that more than one GAPDH gene is transcribed.  相似文献   

10.
The amino acid sequences near the amino termini of glyceraldehyde-3-phosphate dehydrogenase from bovine and porcine liver have been determined. Using classical peptide isolation techniques as well as automated Edman degradation, the NH2-terminal 30 residues of the bovine liver enzyme were determined to be Val-Lys-Val-Gly-Val-Asn-Gly-Phe-Gly-Arg-Ile-Gly-Arg-Leu-Val-Thr-Arg-Ala-Ala-Phe-Asn-Ser-Gly-Lys-Val-Asp-Ile-Val-Phe-Ile. Twenty-two residues from the NH2-terminus of the porcine liver enzyme, determined using the automated Edman degradation, were identical to the corresponding sequence from bovine liver enzyme. Both liver enzymes have Asn at position 6. The corresponding residue 6 in the muscle and yeast glyceraldehyde-3-phosphate dehydrogenases is Asp. This evidence suggests that the Asn-6 residue is specific for the liver tissues. The exchange of Asn for Asp may significantly alter the allosteric properties of muscle and liver enzymes especially the activity of the liver enzymes in gluconeogenesis.  相似文献   

11.
L D Byers  H S She  A Alayoff 《Biochemistry》1979,18(12):2471-2480
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase catalyzes the oxidative phosphorylation of D-glyceraldehyde 3-phosphate. A variety of phosphonates have been shown to substitute for phosphate in this reaction [Gardner, J. H., & Byers, L. D., (1977) J. Biol. Chem. 252, 5925--5927]. The dependence of the logarithm of the equilibrium constant for the reaction on the pKa2 value of the phosphonate is characterized by a Br?nsted coefficient, betaeq, of approximately 1. This represents the sensitivity of the transfer of the phosphoglyceroyl group between the active-site sulfhydryl residue (in the acyl-enzyme intermediate) and the acyl acceptor on the basicity of the acyl acceptor. Molybdate (MoO42-) can also serve as an acyl acceptor in the glyceraldehyde-3-phosphate dehydrogenase catalyzed reaction. The second-order rate constant for the reaction with molybdate is only approximately 12 times lower than the reaction with phosphate even though the pKa2 of molybdate is 3.1 units lower than the pKa2 of phosphate. The immediate product of the molybdate reaction is the acyl molybdate, 1-molybdo-3-phosphoglycerate. The acyl molybdate, like the acyl arsenate (the immediate product of the reaction when arsenate is the acyl acceptor), is kinetically unstable. At pH 7.3 (25 degrees C), the half-life for hydrolysis of the acyl molybdate, or the acyl arsenate, is less than 2.5 s. Thus, hydrolysis of 1-molybdo- and 1-arseno-3-phosphoglycerate is at least 2000 times faster than hydrolysis of 1,3-diphosphoglycerate under the same conditions. Glyceraldehyde-3-phosphate dehydrogenase has a fairly broad specificity for acyl acceptors. Most tetrahedral oxy anions tested are substrates for the enzyme (except SO4(2-) and SeO4(2-)). Tetrahedral monoanions such as ReO4- and GeO(OH)3- are not substrates but do bind to the enzyme. These results suggest the requirement of at least one anionic site on the acyl acceptor required for binding and another anionic group on the acyl receptor required for nucleophilic attack on the acyl enzyme.  相似文献   

12.
Tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus has been crystallized as hexagonal plates, P3121, a = b = 64.6 A?, c = 238.8 A?, with the dimeric molecule (molecular weight, 90,000) occupying two crystallographic asymmetric units (Reid et al., 1973). Three heavy-atom derivatives have been identified and X-ray diffraction measurements have been made to 2.7 Å resolution, using the oscillation method. The three heavy-atom derivatives were methyl mercury (two sites, half occupied, 3 Å apart), uranyl acetate (single fully occupied site) and chloroplatinite PtCl42? (three sites of differing occupancy). The results were used to compute an electron density map at 2.7 Å resolution, which shows the monomer as a unit of about 60 Å × 60 Å × 40 Å. The maximum dimension of the dimer is about 130 Å. Most of the polypeptide chain has been traced uniquely. It includes five α-helices more than 12 Å long and several shorter helices. A six-stranded pleated-sheet structure lies in the centre of each subunit. The catalytic site of the enzyme is believed to be adjacent to the mercury-binding group.  相似文献   

13.
14.
15.
16.
Hypoxic regulation of endothelial glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
The glycolytic enzyme glyceraldehyde-3-phosphatedehydrogenase (GAPDH) is induced by hypoxia in endothelial cells (EC).To define the mechanisms by which GAPDH is regulated by hypoxia, ECwere exposed to cobalt, other transition metals, carbon monoxide (CO),deferoxamine, or cycloheximide in the presence or absence of hypoxia for 24 h, and GAPDH protein and mRNA levels were measured. GAPDH was induced in cells by the transition metals cobalt, nickel, andmanganese and by deferoxamine, and GAPDH mRNA induction by hypoxia wasblocked by cycloheximide. GAPDH induction by hypoxia, unlike that ofother hypoxia-regulated genes, was not inhibited by CO or by4,6-dioxoheptanoic acid, an inhibitor of heme synthesis. GAPDHinduction was not altered by mediators of protein phosphorylation, acalcium channel blocker, a calcium ionophore, or alterations in redoxstate. GAPDH induction by hypoxia or transitional metals was partiallyblocked by sodium nitroprusside but was not altered by the inhibitor ofnitric oxide synthaseN -nitro-L-arginine. Thesefindings suggest that GAPDH induction by hypoxia in EC occurs viamechanisms other than those involved in other hypoxia-responsivesystems.

  相似文献   

17.
Q. Wang  L. Kuo  R. Sjölund  M. -C. Shih 《Protoplasma》1997,198(3-4):155-162
Summary NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NAD-dependent GAPDH) was purified to homogeneity and injected into a rabbit to induce a polyclonal antibody. The antibody was judged to be of high specificity and high affinity. This antibody was used to probe sections ofArabidopsis leaf, stem or roots which were fixed using either paraformaldehyde or a high-pressure freezing method. Our results show that the NAD-dependent GAPDH localizes in the nucleus as well as in the cytosol. In phloem tissue, the NAD-dependent GAPDH was found in companion cells but not in the sieve element.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号