首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While most chemokine receptors fail to cross the chemokine class boundary with respect to the ligands that they bind, the human cytomegalovirus (HCMV)-encoded chemokine receptor US28 binds multiple CC-chemokines and the CX3C-chemokine Fractalkine. US28 binding to CC-chemokines is both necessary and sufficient to induce vascular smooth muscle cell (SMC) migration in response to HCMV infection. However, the function of Fractalkine binding to US28 is unknown. In this report, we demonstrate that Fractalkine binding to US28 not only induces migration of macrophages but also acts to inhibit RANTES-mediated SMC migration. Similarly, RANTES inhibits Fractalkine-mediated US28 migration in macrophages. While US28 binding of both RANTES and Fractalkine activate FAK and ERK-1/2, RANTES signals through Gα12 and Fractalkine through Gαq. These findings represent the first example of differential chemotactic signaling via a multiple chemokine family binding receptor that results in migration of two different cell types. Additionally, the demonstration that US28-mediated chemotaxis is both ligand-specific and cell type–specific has important implications in the role of US28 in HCMV pathogenesis.  相似文献   

2.
Human cytomegalovirus (HCMV) infection of smooth muscle cells (SMCs) in vivo has been linked to a viral etiology of vascular disease. In this report, we demonstrate that HCMV infection of primary arterial SMCs results in significant cellular migration. Ablation of the chemokine receptor, US28, abrogates SMC migration, which is rescued only by expression of the viral homolog and not a cellular G protein-coupled receptor (GPCR). Expression of US28 in the presence of CC chemokines including RANTES or MCP-1 was sufficient to promote SMC migration by both chemokinesis and chemotaxis, which was inhibited by protein tyrosine kinase inhibitors. US28-mediated SMC migration provides a molecular basis for the correlative evidence that links HCMV to the acceleration of vascular disease.  相似文献   

3.
The coordinated cross-talk from heterotrimeric G proteins to Rho GTPases is essential during a variety of physiological processes. Emerging data suggest that members of the Galpha(12/13) and Galpha(q/11) families of heterotrimeric G proteins signal downstream to RhoA via distinct pathways. Although studies have elucidated mechanisms governing Galpha(12/13)-mediated RhoA activation, proteins that functionally couple Galpha(q/11) to RhoA activation have remained elusive. Recently, the Dbl-family guanine nucleotide exchange factor (GEF) p63RhoGEF/GEFT has been described as a novel mediator of Galpha(q/11) signaling to RhoA based on its ability to synergize with Galpha(q/11) resulting in enhanced RhoA signaling in cells. We have used biochemical/biophysical approaches with purified protein components to better understand the mechanism by which activated Galpha(q) directly engages and stimulates p63RhoGEF. Basally, p63RhoGEF is autoinhibited by the Dbl homology (DH)-associated pleckstrin homology (PH) domain; activated Galpha(q) relieves this autoinhibition by interacting with a highly conserved C-terminal extension of the PH domain. This unique extension is conserved in the related Dbl-family members Trio and Kalirin and we show that the C-terminal Rho-specific DH-PH cassette of Trio is similarly activated by Galpha(q).  相似文献   

4.
Mouse cytomegalovirus (MCMV) encodes two potential seven-transmembrane-spanning proteins with homologies to cellular chemokine receptors, M33 and M78. While these virus-encoded chemokine receptors are necessary for the in vivo pathogenesis of MCMV, the function of these proteins is unknown. Since vascular smooth muscle cell (SMC) migration is of critical importance for the development of atherosclerosis and other vascular diseases, the ability of M33 to promote SMC motility was assessed. Similar to human CMV, MCMV induced the migration of mouse aortic SMCs but not mouse fibroblasts. To demonstrate whether M33 was required for MCMV-induced SMC migration, we employed interfering-RNA technology to specifically knock down M33 expression in the context of viral infection. The knockdown of M33 resulted in the specific reduction of M33 protein expression and ablation of MCMV-mediated SMC migration but failed to reduce viral growth in cultured cells. Adenovirus vector expression of M33 was sufficient to promote SMC migration, which was enhanced in the presence of recombinant mouse RANTES (mRANTES). In addition, M33 promoted the activation of Rac1 and extracellular signal-related kinase 1/2 upon stimulation with mRANTES. These findings demonstrate that mRANTES is a ligand for this chemokine receptor and that the activation of M33 occurs in a ligand-dependent manner. Thus, M33 is a functional homologue of US28 that is required for MCMV-induced vascular SMC migration.  相似文献   

5.
The human cytomegalovirus-encoded chemokine receptor US28 induces arterial smooth muscle cell (SMC) migration; however, the underlying mechanisms involved in this process are unclear. We have previously shown that US28-mediated SMC migration occurs by a ligand-dependent process that is sensitive to protein-tyrosine kinase inhibitors. We demonstrate here that US28 signals through the non-receptor protein-tyrosine kinases Src and focal adhesion kinase (FAK) and that this activity is necessary for US28-mediated SMC migration. In the presence of RANTES (regulated on activation normal T cell expressed and secreted), US28 stimulates the production of a FAK.Src kinase complex. Interestingly, Src co-immunoprecipitates with US28 in a ligand-dependent manner. This association occurs earlier than the formation of the FAK.Src kinase complex, suggesting that US28 activates Src before FAK. US28 binding to RANTES also promotes the formation of a Grb2.FAK complex, which is sensitive to treatment with the Src inhibitor PP2, further highlighting the critical role of Src in US28 activation of FAK. Human cytomegalovirus US28-mediated SMC migration is inhibited by treatment with PP2 and through the expression of either of two dominant negative inhibitors of FAK (F397Y and NH2-terminal amino acids 1-401). These findings demonstrate that activation of FAK and Src plays a critical role in US28-mediated signaling and SMC migration.  相似文献   

6.
7.
8.
9.
Heterotrimeric GTP-binding (G) proteins transduce hormone-induced signals to their effector enzymes, which include several phospholipases. In particular, the G(o)/G(i) and G(q) protein families have been shown to couple signaling to phospholipase A(2) (PLA(2)), phospholipase C, and phospholipase D, while the G(12)/G(13) family has been linked to the activation of small GTPases of the Rho family, and hence, to phospholipase D activation. Here, we demonstrate that in CHO cells, the G(12)/G(13) family is also able to activate cPLA(2)alpha, through the activation of RhoA and, subsequently, ERK1/2. Hormone-induced arachidonic acid release increased as a consequence of Galpha(13) overexpression, and was inhibited through inhibition of Galpha(13) signaling. The Galpha(13)-mediated cPLA(2)alpha activation was inhibited by pharmacological blockade of ERK1/2 with either U0126 or PD98059, and by RhoA inactivation with C3 toxin or a dominant-negative RhoA (N19RhoA), and was stimulated by the serine-threonine phosphatase inhibitor calyculin A. Our data thus identify a pathway of cPLA(2)alpha regulation that is initiated by thrombin and purinergic receptor activation, and that signals through Galpha(13), RhoA and ERK1/2, with the involvement of a calyculin-sensitive phosphatase.  相似文献   

10.
Many studies have suggested a role for the members of the G12 family of heterotrimeric G proteins (Galpha12 and Galpha13) in oncogenesis and tumor cell growth. However, few studies have examined G12 signaling in actual human cancers. In this study, we examined the role of G12 signaling in prostate cancer. We found that expression of the G12 proteins is significantly elevated in prostate cancer. Interestingly, expression of the activated forms of Galpha12 or Galpha13 in the PC3 and DU145 prostate cancer cell lines did not promote cancer cell growth. Instead, expression of the activated forms of Galpha12 or Galpha13 in these cell lines induced cell invasion through the activation of the RhoA family of G proteins. Furthermore, inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) in the PC3 and DU145 cell lines did not reduce cancer cell growth. However, inhibition of G12 signaling with p115-RGS in these cell lines blocked thrombin- and thromboxane A2-stimulated cell invasion. These observations identify the G12 family proteins as important regulators of prostate cancer invasion and suggest that these proteins may be targeted to limit invasion- and metastasis-induced prostate cancer patient mortality.  相似文献   

11.
Previously it was shown that the HHV-8-encoded chemokine receptor ORF74 shows considerable agonist-independent, constitutive activity giving rise to oncogenic transformation (Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. (1997) Nature 385, 347-350). In this study we report that a second viral-encoded chemokine receptor, the human cytomegalovirus-encoded US28, also efficiently signals in an agonist-independent manner. Transient expression of US28 in COS-7 cells leads to the constitutive activation of phospholipase C and NF-kappaB signaling via G(q/11) protein-dependent pathways. Whereas phospholipase C activation is mediated via Galpha(q/11) subunits, the activation of NF-kappaB strongly depends on betagamma subunits with a preference for the beta(2)gamma(1) dimer. The CC chemokines RANTES (regulated on activation, normal T cell expressed and secreted) and MCP-1 (monocyte chemotactic protein-1) act as neutral antagonists at US28, whereas the CX(3)C chemokine fractalkine acts as a partial inverse agonist with IC(50) values of 1-5 nm. Our data suggest that a high level of constitutive activity might be a more general characteristic of viral G protein-coupled receptors and that human cytomegalovirus might exploit this G protein-coupled receptor property to modulate the homeostasis of infected cells via the early gene product US28.  相似文献   

12.
The mouse cytomegalovirus M33 protein is highly homologous to mammalian G protein-coupled receptors (GPCRs) yet functions in an agonist-independent manner to activate a number of classical GPCR signal transduction pathways. M33 is functionally similar to the human cytomegalovirus-encoded US28 GPCR in its ability to induce inositol phosphate accumulation, activate NF-kappaB, and promote smooth muscle cell migration. This ability to promote cellular migration suggests a role for viral GPCRs like M33 in viral dissemination in vivo, and accordingly, M33 is required for efficient murine cytomegalovirus replication in the mouse. Although previous studies have identified several M33-induced signaling pathways, little is known regarding the membrane-proximal events involved in signaling and regulation of this receptor. In this study, we used recombinant retroviruses to express M33 in wild-type and Galpha(q/11)(-/-) mouse embryonic fibroblasts and show that M33 couples directly to the G(q/11) signaling pathway to induce high levels of total inositol phosphates in an agonist-independent manner. Our data also show that GRK2 is a potent regulator of M33-induced G(q/11) signaling through its ability to phosphorylate M33 and sequester Galpha(q/11) proteins. Taken together, the results from this study provide the first genetic evidence of a viral GPCR coupling to a specific G protein signaling pathway as well as identify the first viral GPCR to be regulated specifically by both the catalytic activity of the GRK2 kinase domain and the Galpha(q/11) binding activity of the GRK2 RH domain.  相似文献   

13.
The viral G-protein coupled receptor (vGPCR) specified by human herpesvirus 8 (HHV-8) open reading frame 74 (ORF74) is a ligand-independent chemokine receptor that has structural and functional homologues among other characterized gammaherpesviruses and related receptors in the betaherpesviruses. Sequence comparisons of the gammaherpesvirus vGPCRs revealed a highly conserved region in the C tail, just distal to the seventh transmembrane domain. Mutagenesis of the corresponding codons of HHV-8 ORF74 was carried out to provide C-tail-altered proteins for functional analyses. By measuring receptor-activated vascular endothelial growth factor promoter induction and NF-kappaB, mitogen-activated protein kinase, and Ca(2+) signaling, we found that while some altered receptors showed general signaling deficiencies, others had distinguishable activation profiles, suggestive of selective Galpha protein coupling. This was supported by the finding that vGPCR and representative functionally altered variants, vGPCR.8 (R322W) and vGPCR.15 (M325S), were affected differently by inhibitors of Galpha(i) (pertussis toxin), protein kinase C (GF109203X), and phosphatidylinositol 3-kinase (wortmannin). Consistent with the signaling data, [(35)S]GTPgammaS incorporation assays revealed preferential coupling of vGPCR.15 to Galpha(q) and an inability of vGPCR.8 to couple functionally to Galpha(q). However, both variants, wild-type vGPCR, and a C-tail deletion version of the receptor were equally able to associate physically with Galpha(q). Combined, our data demonstrate that HHV-8 vGPCR contains discrete sites of Galpha interaction and that receptor residues in the proximal region of the cytoplasmic tail are determinants of Galpha protein coupling specificity.  相似文献   

14.
The heterotrimeric G proteins, G(12) and G(13), mediate signaling between G protein-coupled receptors and the monomeric GTPase, RhoA. One pathway for this modulation is direct stimulation by Galpha(13) of p115 RhoGEF, an exchange factor for RhoA. The GTPase activity of both Galpha(12) and Galpha(13) is increased by the N terminus of p115 Rho guanine nucleotide exchange factor (GEF). This region has weak homology to the RGS box sequence of the classic regulators of G protein signaling (RGS), which act as GTPase-activating proteins (GAP) for G(i) and G(q). Here, the RGS region of p115 RhoGEF is shown to be distinctly different in that sequences flanking the predicted "RGS box" region are required for both stable expression and GAP activity. Deletions in the N terminus of the protein eliminate GAP activity but retain substantial binding to Galpha(13) and activation of RhoA exchange activity by Galpha(13). In contrast, GTRAP48, a homolog of p115 RhoGEF, bound to Galpha(13) but was not stimulated by the alpha subunit and had very poor GAP activity. Besides binding to the N-terminal RGS region, Galpha(13) also bound to a truncated protein consisting only of the Dbl homology (DH) and pleckstrin homology (PH) domains. However, Galpha(13) did not stimulate the exchange activity of this truncated protein. A chimeric protein, which contained the RGS region of GTRAP48 in place of the endogenous N terminus of p115 RhoGEF, was activated by Galpha(13). These results suggest a mechanism for activation of the nucleotide exchange activity of p115 RhoGEF that involves direct and coordinate interaction of Galpha(13) to both its RGS and DH domains.  相似文献   

15.
Pasteurella multocida toxin (PMT) is a potent mitogen, which is known to activate phospholipase Cbeta by stimulating the alpha-subunit of the heterotrimeric G protein G(q). PMT also activates RhoA and RhoA-dependent pathways. Using YM-254890, a specific inhibitor of G(q/11), we studied whether activation of RhoA involves G proteins other than G(q/11). YM-254890 inhibited PMT or muscarinic M3-receptor-mediated stimulation of phospholipase Cbeta at similar concentrations in HEK293m3 cells. In these cells, PMT-induced RhoA activation and enhancement of RhoA-dependent luciferase activity were partially inhibited by YM-254890. In Galpha(q/11)-deficient fibroblasts, PMT induced activation of RhoA, increase in RhoA-dependent luciferase activity, and increase in ERK phosphorylation. None of these effects were influenced by YM-254890. However, RhoA activation by PMT was inhibited by RGS2, RGS16, lscRGS, and dominant negative G(13)(GA), indicating involvement of Galpha(12/13) in the PMT effect on RhoA. In Galpha(12/13) gene-deficient cells, PMT-induced stimulation of RhoA, luciferase activity, and ERK phosphorylation were blocked by YM-254890, indicating the involvement of G(q). Infection with a virus harboring the gene of Galpha(13) reconstituted the increase in RhoA-dependent luciferase activity by PMT even in the presence of YM-254890. The data show that YM-254890 is able to block PMT activation of Galpha(q) and indicate that, in addition to Galpha(q), the Galpha(12/13) G proteins are targets of PMT.  相似文献   

16.
In patients with impaired cell-mediated immune responses (e.g., lung transplant recipients and AIDS patients), cytomegalovirus (CMV) infection causes severe disease such as pneumonitis. However, although immunocompetency in the host can protect from CMV disease, the virus persists by evading the host immune defenses. A model of CMV infection of the endothelium has been developed in which inflammatory stimuli, such as the CC chemokine RANTES, bind to the endothelial cell surface, stimulating calcium flux during late times of CMV infection. At 96 h postinfection, CMV-infected cells express mRNA of the CMV-encoded CC chemokine receptor US28 but do not express mRNA of other CC chemokine receptors that bind RANTES (CCR1, CCR4, CCR5). Cloning and stable expression of the receptor CMV US28 in human kidney epithelial cells (293 cells) with and without the heterotrimeric G protein α16 indicated that CMV US28 couples to both Gαi and Gα16 proteins to activate calcium flux in response to the chemokines RANTES and MCP-3. Furthermore, cells that coexpress US28 and Gα16 responded to RANTES stimulation with activation of extracellular signal-regulated kinase, which could be attributed, in part, to specific Gα16 coupling. Thus, through expression of the CC chemokine receptor US28, CMV may utilize resident G proteins of the infected cell to manipulate cellular responses stimulated by chemokines.  相似文献   

17.
The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), have many cellular functions in common, such as stress fiber formation and neurite retraction. However, a variety of G protein-coupled receptors appear to couple selectively to Galpha(12) and Galpha(13). For example, thrombin and lysophosphatidic acid (LPA) have been shown to induce stress fiber formation via Galpha(12) and Galpha(13), respectively. We recently showed that active forms of Galpha(12) and Galpha(13) interact with Ser/Thr phosphatase type 5 through its tetratricopeptide repeat domain. Here we developed a novel assay to measure the activities of Galpha(12) and Galpha(13) by using glutathione S-transferase-fused tetratricopeptide repeat domain of Ser/Thr phosphatase type 5, taking advantage of the property that tetratricopeptide repeat domain strongly interacts with active forms of Galpha(12) and Galpha(13). By using this assay, we identified that thrombin and LPA selectively activate Galpha(12) and Galpha(13), respectively. Galpha(12) and Galpha(13) show a high amino acid sequence homology except for their N-terminal short sequences. Then we generated chimeric G proteins Galpha(12N/13C) and Galpha(13N/12C), in which the N-terminal short sequences are replaced by each other, and showed that thrombin and LPA selectively activate Galpha(12N/13C) and Galpha(13N/12C), respectively. Moreover, thrombin and LPA stimulate RhoA activity through Galpha(12) and Galpha(13), respectively, in a Galpha(12) family N-terminal sequence-dependent manner. Thus, N-terminal short sequences of the G(12) family determine the selective couplings of thrombin and LPA receptors to the Galpha(12) family.  相似文献   

18.
Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A(2) (TXA(2)) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G(q), G(i) and G(z) (refs. 4-6). However, the role and relative importance of G(12) and G(13), which are activated by various platelet stimuli, are unclear. Here we show that lack of Galpha(13), but not Galpha(12), severely reduced the potency of thrombin, TXA(2) and collagen to induce platelet shape changes and aggregation in vitro. These defects were accompanied by reduced activation of RhoA and inability to form stable platelet thrombi under high shear stress ex vivo. Galpha(13) deficiency in platelets resulted in a severe defect in primary hemostasis and complete protection against arterial thrombosis in vivo. We conclude that G(13)-mediated signaling processes are required for normal hemostasis and thrombosis and may serve as a new target for antiplatelet drugs.  相似文献   

19.
Kashef K  Lee CM  Ha JH  Reddy EP  Dhanasekaran DN 《Biochemistry》2005,44(43):14090-14096
Scaffolding proteins play a critical role in conferring specificity and fidelity to signaling pathways. The JNK-interacting leucine zipper protein (JLP) has been identified as a scaffolding protein involved in linking components of the JNK signaling module. Galpha(12) and Galpha(13), the alpha-subunits of heterotrimeric G proteins G12 and G13, respectively, stimulate the JNK module in diverse cell types. Here, we report that Galpha(13) physically interacts with JLP, and this interaction enhances Galpha(13)-mediated JNK activation. We also demonstrate endogenous interaction between JLP and Galpha(13) in MCF-7 cells. JLP interaction is specific to the G12 family of alpha-subunits via its C-terminal domain (termed GID-JLP), spanning amino acids 1165-1307, and this interaction is more pronounced with the mutationally or functionally activated form of Galpha(13) compared to that of wild-type Galpha(13). The presence of a ternary complex consisting of Galpha(13), JLP, and JNK suggests a role for JLP in tethering Galpha(13) to the signaling components involved in JNK activation. Coexpression of GID-JLP disrupts ternary complex formation in addition to attenuating Galpha(13)-stimulated JNK activity. These findings identify JLP as a novel scaffolding protein in the Galpha(13)-mediated JNK signaling pathway.  相似文献   

20.
Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Galpha(12/13) family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Galpha(12), Galpha(13), or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Galpha(13) or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Galpha(12/13)/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号