首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A molecular phylogeny was inferred from newly obtained partial 28S rRNA gene sequences of Sundanonchus micropeltis (Sundanonchidae), Thaparocleidus siamensis and Cichlidogyrus sp. (Ancyrocephalidae), and other already available sequences. Although sequences are lacking for several families, the following phylogenetic relationships could be inferred. The Diplectanidae were the sister-group to a clade including Sundanonchus and the Ancyrocephalidae; Sundanonchus was the sister-group to the Ancyrocephalidae, therefore suggesting validity of the Sundanonchidae, which include this single genus; within the Ancyrocephalidae, Thaparocleidus (Ancylodiscoidinae) was the sister-group to the four other taxa, though with relatively low support, suggesting that the Ancylodiscoidinae are the sister-group to the Ancyrocephalinae.  相似文献   

2.
The current classification of the Monocotylidae (Monogenea) is based on a phylogeny generated from morphological characters. The present study tests the morphological phylogenetic hypothesis using molecular methods. Sequences from domains C2 and D1 and the partial domains C1 and D2 from the 28S rDNA gene for 26 species of monocotylids from six of the seven subfamilies were used. Trees were generated using maximum parsimony, neighbour joining and maximum likelihood algorithms. The maximum parsimony tree, with branches showing less than 70% bootstrap support collapsed, had a topology identical to that obtained using the maximum likelihood analysis. The neighbour joining tree, with branches showing less than 70% support collapsed, differed only in its placement of Heterocotyle capricornensis as the sister group to the Decacotylinae clade. The molecular tree largely supports the subfamilies established using morphological characters. Differences are primarily how the subfamilies are related to each other. The monophyly of the Calicotylinae and Merizocotylinae and their sister group relationship is supported by high bootstrap values in all three methods, but relationships within the Merizocotylinae are unclear. Merizocotyle is paraphyletic and our data suggest that Mycteronastes and Thaumatocotyle, which were synonymized with Merizocotyle after the morphological cladistic analysis, should perhaps be resurrected as valid genera. The monophyly of the Monocotylinae and Decacotylinae is also supported by high bootstrap values. The Decacotylinae, which was considered previously to be the sister group to the Calicotylinae plus Merizocotylinae, is grouped in an unresolved polychotomy with the Monocotylinae and members of the Heterocotylinae. According to our molecular data, the Heterocotylinae is paraphyletic. Molecular data support a sister group relationship between Troglocephalus rhinobatidis and Neoheterocotyle rhinobatidis to the exclusion of the other species of Neoheterocotyle and recognition of Troglocephalus renders Neoheterocotyle paraphyletic. We propose Troglocephalus incertae sedis. An updated classification and full species list of the Monocotylidae is provided.  相似文献   

3.
The current classification of the Monocotylidae (Monogenea) is based on a phylogeny generated from morphological characters. The present study tests the morphological phylogenetic hypothesis using molecular methods. Sequences from domains C2 and D1 and the partial domains C1 and D2 from the 28S rDNA gene for 26 species of monocotylids from six of the seven subfamilies were used. Trees were generated using maximum parsimony, neighbour joining and maximum likelihood algorithms. The maximum parsimony tree, with branches showing less than 70% bootstrap support collapsed, had a topology identical to that obtained using the maximum likelihood analysis. The neighbour joining tree, with branches showing less than 70% support collapsed, differed only in its placement of Heterocotyle capricornensis as the sister group to the Decacotylinae clade. The molecular tree largely supports the subfamilies established using morphological characters. Differences are primarily how the subfamilies are related to each other. The monophyly of the Calicotylinae and Merizocotylinae and their sister group relationship is supported by high bootstrap values in all three methods, but relationships within the Merizocotylinae are unclear. Merizocotyle is paraphyletic and our data suggest that Mycteronastes and Thaumatocotyle, which were synonymized with Merizocotyle after the morphological cladistic analysis, should perhaps be resurrected as valid genera. The monophyly of the Monocotylinae and Decacotylinae is also supported by high bootstrap values. The Decacotylinae, which was considered previously to be the sister group to the Calicotylinae plus Merizocotylinae, is grouped in an unresolved polychotomy with the Monocotylinae and members of the Heterocotylinae. According to our molecular data, the Heterocotylinae is paraphyletic. Molecular data support a sister group relationship between Troglocephalus rhinobatidis and Neoheterocotyle rhinobatidis to the exclusion of the other species of Neoheterocotyle and recognition of Troglocephalus renders Neoheterocotyle paraphyletic. We propose Troglocephalus incertae sedis. An updated classification and full species list of the Monocotylidae is provided.  相似文献   

4.
5.
Recent studies based on molecular data (18S rDNA and partial 28S rDNA) and morphology did not resolve a terminal polytomy within the Polyopisthocotylea. Here, we have used sequences from the full domain D2 of the 28S rDNA for 24 species (18 new sequences) with three phylogenetic methods, maximum parsimony, neighbour-joining and maximum likelihood, to infer the relationships among the Polyopisthocotylea. The analysis of the domain D2 of the 28S rDNA has been performed on two data sets. The first one, complete, included the Polystomatidae as the outgroup in order to infer general relationships, and the second one, reduced, excluded the Polystomatidae and the polyopisthocotylean parasites of chondrichthyans, but used the Mazocraeidae as the outgroup in order to resolve the relationships between the terminal groups. The topology found, sustained by high bootstrap and decay index value, is: (outgroup (Chimaericolidae (Mazocraeidae (Gastrocotylinea, other Polyopisthocotylea)))). The polyopisthocotylean parasites of chondrichthyans are the sister-group of the polyopisthocotylean parasites of teleosts. In the latter, the Mazocraeidae, essentially parasites of Clupeidae, have a basal position. The polytomy between Gastrocotylinea, Discocotylinea and Microcotylinea is partially resolved in this study for the first time: the Gastrocotylinea are the sister-group of an unresolved group including the Microcotylinea, Discocotylinea and Plectanocotylidae. Inclusion of the Plectanocotylidae in the suborder Mazocraeinea is rejected. Monophyly of the Microcotylinea and Plectanocotylidae is confirmed, but monophyly of the Discocotylinea is questioned by the exclusion of Diplozoon.  相似文献   

6.
7.
The 28S rDNA from nine species of the genus Syphacia collected in Japan was sequenced, and the phylogenetic relationship was inferred from multiple sequence alignment of 28S rDNA by the MAFFT program. Phylogenetic tree indicates that S. petrusewiczi, which was the only species belonging to the subgenus Seuratoxyuris, has diverged earlier than other rodent pinworms examined and was distantly separated from the others genetically. It was revealed that S. agraria and S. vandenbrueli, whose subgeneric status has not been specified, belonged to the subgenus Syphacia together with other 6 species. Syphacia montana from Clethrionomys, Eothenomys and Microtus was very closely related to S. obvelata from Mus, and that S. frederici from Apodemus and S. vandenbrueli from Micromys were comparatively closely related to the former two species. The phylogenetic relationship among the three species of Syphacia found in Japanese Apodemus was inconsistent with the biogeography of host rodents. The co-evolutionary relationship between pinworm species and their host rodents may not be so strict and host switching has probably occurred frequently during the course of evolution.  相似文献   

8.
The infrequently reported allocreadiid digenean Creptotrema funduli Mueller, 1934 is documented from the blackstripe topminnow, Fundulus notatus (Cyprinodontiformes: Fundulidae), in the headwaters of the Biloxi River, Harrison County, Mississippi. Specimens from Mississippi were compared with the type material from Fundulus diaphanus menona from Oneida Lake, New York, and no substantial difference was found. A fragment of ribosomal DNA, comprising a short portion of the 3' end of 18S nuclear rDNA gene, internal transcribed spacer (ITS) genes (including ITS1, 5.8S, and ITS2), and the 5' end of the 28S gene including variable domains D1-D3 was sequenced for the species. A portion of the 28S rDNA gene from C. funduli, plus similar fragments from 8 other allocreadiids and the callodistomatid Prosthenhystera sp., were aligned and subjected to maximum likelihood and Bayesian inference analyses. Resulting phylogenetic trees were derived from the analyses and used to estimate the relationship of Creptotrema Travassos, Artigas, and Pereira, 1928 with other allocreadiids. Creptotrema was found to be closely related to Megalogonia Surber, 1928 and 3 Neotropical genera, i.e., Wallinia Pearse, 1920, Creptotrematina Yamaguti, 1954, and Auriculostoma Scholz, Aguirre-Macedo, and Choudhury, 2004. No molecular data were available for species in Creptotrema prior to this study, so the ITS1, 5.8S, and ITS2 genes have been made available for comparative studies involving neotropical species in the genus.  相似文献   

9.
Phylogenetic relationships among the Braconidae were examined using homologous 16S rDNA, 28S rDNA D2 region, and 18S rDNA gene sequences and morphological data using both PAUP* 4.0 and MRBAYES 3.0B4 from 88 in-group taxa representing 35 subfamilies. The monophyletic nature of almost all subfamilies, of which multiple representatives are present in this study, is well-supported except for two subfamilies, Cenocoelinae and Neoneurinae that should probably be treated as tribal rank taxa in the subfamily Euphorinae. The topology of the trees generated in the present study supported the existence of three large generally accepted lineage or groupings of subfamilies: two main entirely endoparasitic lineages of this family, referred to as the "helconoid complex" and the "microgastroid complex," and the third "the cyclostome." The Aphidiinae was recovered as a member of the non-cyclostomes, probably a sister group of Euphorinae or Euphorinae-complex. The basal position of the microgastroid complex among the non-cyclostomes has been found in all our analyses. The cyclostomes were resolved as a monophyletic group in all analyses if two putatively misplaced groups (Mesostoa and Aspilodemon) were excluded from them. Certain well-supported relationships evident in this family from the previous analyses were recovered, such as a sister-group relationships of Alysiinae+Opiinae, of Braconinae+Doryctinae, and a close relationship between Macrocentrinae, Xiphozelinae, Homolobinae, and Charmontinae. The relationships of "Ichneutinae + ((Adeliinae + Cheloninae) + (Miracinae + (Cardiochilinae + Microgastrinae)))" was confirmed within the microgastroid complex. The position of Acampsohelconinae, Blacinae, and Trachypetinae is problematic.  相似文献   

10.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

11.
To infer the monophyletic origin and phylogenetic relationships of the order Desmoscolecida, a unique and puzzling group of mainly free-living marine nematodes, we newly determined nearly complete 18S rDNA sequences for six marine desmoscolecid nematodes belonging to four genera (Desmoscolex, Greeffiella, Tricoma and Paratricoma). Based on the present data and those of 72 nematode species previously reported, the first molecular phylogenetic analysis focusing on Desmoscolecida was done by using neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods. All four resultant trees consistently and strongly supported that the family Desmoscolecidae forms a monophyletic group with very high node confidence values. The monophyletic clade of desmocolecid nematodes was placed as a sister group of the clade including some members of Monhysterida and Araeolaimida, Cyartonema elegans (Cyartonematidae) and Terschellingia longicaudata (Linhomoeidae) in all the analyses. However, the present phylogenetic trees do not show any direct attraction between the families Desmoscolecidae and Cyartonematidae. Within the monophyletic clade of the family Desmoscolecidae in all of the present phylogenetic trees, there were consistently observed two distinct sub-groups which correspond to the subfamilies Desmoscolecinae [Greeffiella sp. + Desmoscolex sp.] and Tricominae [Paratricoma sp. + Tricoma sp].  相似文献   

12.
We produced a molecular phylogeny of species within the order Strongylida (bursate nematodes) using the D1 and D2 domains of 28S rDNA, with 23 new sequences for each domain. A first analysis using Caenorhabditis elegans as an outgroup produced a tree with low resolution in which three taxa (Dictyocaulus filaria, Dictyocaulus noerneri, and Metastrongylus pudendotectus) showed highly divergent sequences. In a second analysis, these three species and C. elegans were removed and an Ancylostomatina, Bunostomum trigonocephalum, was chosen (on the basis of previous morphological analyses) as the outgroup for an analysis of the phylogenetic relationships between and within the Strongylina (strongyles) and Trichostrongylina (trichostrongyles). A very robust tree was obtained. The Trichostrongylina were monophyletic, but the Strongylina were paraphyletic, though this requires confirmation. Within the Trichostrongylina, the three superfamilies defined from morphological characters are confirmed, with the Trichostrongyloidea sister group to a clade including the Molineoidea and Heligmosomoidea. Within the Trichostrongyloidea, the Cooperiidae, Trichostrongylidae, and Haemonchidae were polytomous, the Haemonchinae were monophyletic, but the Ostertagiinae were paraphyletic. The sister-group relationships between Molineoidea and Heligmosomoidea were unsuspected from previous morphological analysis. No unequivocal morphological synapomorphy could be found for the grouping Molineoidea + Heligmosomoidea, but none was found which contradicted it.  相似文献   

13.
隙蛛亚科Coelotinae主要分布于东亚地区,其中我国的已有种类占到全世界种数的一半以上,因此对于我国隙蛛类蜘蛛的研究已经成为世界暗蛛科研究的重点之一。隙蛛亚科属于无筛器类群,于1893年,由Cambridge以隙蛛属为模式属而建立,归属于无筛器的漏斗蛛科。之后,虽然经历了数次修订  相似文献   

14.
Relationships among the currently recognized 11 diploid species within the genus Aegilops have been investigated. Sequence similarity analysis, based upon 363 sequenced 5S rDNA clones from 44 accessions plus 15 sequences retrieved from GenBank, depicted two unit classes labeled the long AE1 and short AE1. Several different analytical methods were applied to infer relationships within haplomes, between haplomes and among the species, including maximum parsimony and maximum likelihood analyses of consensus sequences, “total evidence” phylogeny analysis and “matrix representation with parsimony” analysis. None were able to depict suites of markers or unit classes that could discern among the seven haplomes as is observed among established haplomes in other genera within the tribe Triticeae; however, most species could be separated when displayed on gene trees. These results suggest that the haplomes currently recognized are so refined that they may be relegated as sub-haplomes or haplome variants. Amblyopyrum shares the same 5S rDNA unit classes with the diploid Aegilops species suggesting that it belongs within the latter. Comparisons of the Aegilops sequences with those of Triticum showed that the long AE1 unit class of Ae. tauschii shared the clade with the equivalent long D1 unit class, i.e., the putative D haplome donor, but the short AE1 unit class did not. The long AE1 unit class but not the short, of Ae. speltoides and Ae. searsii both share the clade with the previously identified long {S1 and long G1 unit classes meaning that both Aegilops species can be equally considered putative B haplome donors to tetraploid Triticum species. The semiconserved nature of the nontranscribed spacer in Aegilops and in Triticeae in general is discussed in view that it may have originated by processes of incomplete gene conversion or biased gene conversion or birth-and-death evolution.  相似文献   

15.
李春香  杨群 《遗传》2003,25(2):177-180
对杉科(Taxodiaceae)与柏科(Cupressaceae s.s.)的28S rRNA基因的部分序列(约630 bp)进行PCR扩增、序列测定和系统发生关系分析,用简约法和邻接法构建的系统发生树基本一致。结果表明,杉科与柏科构成一个单系群,支持将杉科、柏科(Sciadopitys除外)合并为一个科——广义柏科(Cupressaceae sensu lato)的观点。在广义柏科中,Taiwania、Athrotaxis分别形成一支系;Metasequoia、Sequoia、Sequoiadendron关系较近,聚成一支系; Taxodium、Glyptostrobus、Cryptomeria聚成一支系;柏科聚成一支系。这一分析结果与叶绿体基因序列的分析结果相吻合,但是由于28S rRNA基因的进化速率较慢,尚不能分辨上述各个支系之间的系统演化关系。 Abstract:DNA sequences from 28S rDNA were used to assess relationships between and within traditional Taxodiaceae and Cupressaceae s.s.The MP tree and NJ tree generally are similar to one another.The results show that Taxodiaceae and Cupressaceae s.s.form a monophyletic conifer lineage excluding Sciadopitys.In the Taxodiaceae-Cupressaceae s.s.monophyletic group,the Taxodiaceae is paraphyletic.Taxodium,Glyptostrobus and Cryptomeria forming a clade(Taxodioideae),in which Glyptostrobus and Taxodium are closely related and sister to Cryptomeria;Sequoia,Sequoiadendron and Metasequoia are closely related to each other,forming another clade (Sequoioideae),in which Sequoia and Sequoiadendron are closely related and sister to Metasequoia;the seven genera of Cupressaceae s.s.are found to be closely related to form a monophyletic lineage (Cupressoideae).These results are basically similar to analyses from chloroplast gene data.But the relationships among Taiwania,Sequoioideae,Taxodioideae,and Cupressoideae remain unclear because of the slow evolution rate of 28S rDNA,which might best be answered by sequencing more rapidly evolving nuclear genes.  相似文献   

16.
A phylogeny was reconstructed for 23 populations of fringe-toed lizards (genus Uma) from the three most northern species of the genus, including the Mojave fringe-toed lizard U. scoparia, the Colorado Desert fringe-toed lizard U. notata, and the endangered Coachella Valley fringe-toed lizard U. inornata. The outgroup taxa were the zebra-tailed lizard, Callisaurus draconoides; the lesser earless lizard, Holbrookia maculata; and the greater earless lizard, Cophosaurus texanus. Evaluation of 1630 combined nucleotide sequence from the mitochondrial genes ATPase 6 and cytochrome b yielded 10 most parsimonious trees. Reweighting the characters using the rescaled consistency index eliminated eight of these trees. The remaining two trees differ only in the placement of two individuals from the Superstition Mountains which either formed a monophlyetic unit or grouped with one individual from the Anza-Borrego population. The preferred phylogeny, one more consistent with geography, had two primary clades: one consisting of U. scoparia and the other placing U. inornata inside the clade containing U. notata. Uma inornata was most closely related to nearby U. notata notata, as opposed to more distant U. notata rufopunctata.  相似文献   

17.
This study focuses on the phylogenetic relationships within the Polyopisthocotylea and Monopisthocotylea, two groups that are often grouped within the monogeneans, a group of disputed paraphyly. Phylogenetic analyses were conducted with multiple outgroups chosen according to two hypotheses, a paraphyletic Monogenea or a monophyletic Monogenea, and with three methods, namely maximum parsimony, neighbour joining and maximum likelihood. Sequences used were from the partial domain C1, full domain D1, and partial domain C2 (550 nucleotides, 209 unambiguously aligned sites) from the 28S ribosomal RNA gene for 16 species of monopisthocotyleans, 26 polyopisthocotyleans including six polystomatids, and other Platyhelminthes (61 species in total, 27 new sequences). Results were similar with outgroups corresponding to the two hypotheses. Within the Monopisthocotylea, relationships were: ?[(Udonella, capsalids), monocotylids], (diplectanids, ancyrocephalids)?; each of these families was found to be monophyletic and their monophyly was supported by high bootstrap values in neighbour joining and maximum parsimony. Within the Polyopisthocotylea, the polystomatids were the sister-group of all others. Among the latter, Hexabothrium, parasite of chondrichthyans, was the most basal, and the mazocraeids, mainly parasites of clupeomorph teleosts, were the sister-groups of all other studied polyopisthocotyleans, these, mainly parasites of euteleosts, being polytomous.  相似文献   

18.
16S ribosomal RNA gene sequences from seven strains of Aquaspirillum peregrinum, Aqu. itersonii, Aqu. polymorphum, and Oceanospirillum pusillum were compared with homologous sequences from other members of helical-shaped bacteria. The bootstrapped neighbor-joining tree, inferred from 887 aligned sites, placed the spirillum taxa assigned to Aquaspirillum, Oceanospirillum, Azospirillum, Magnetospirillum, Rhodospirillum, and Rhodocista of the Proteobacteria in seven clusters of alpha Proteobacteria separately from other shapes of bacteria. Aqu. peregrinum and Aqu. itersonii grouped together in 88% bootstrap support. They were more related to Rhodospirillum rubrum and Rsp. photometricum than Aqu. polymorphum. Aqu. polymorphum was close to Magnetospirillum gryphiswaldense, Mag. magnetotacticum, Rsp. fulvum, and Rsp. molischianum, and more close to Mag. gryphiswaldense. Oce. pusillum was not related to other spirillum taxa and was placed in a separate branch. Rhodocista was very closely related to Azospirillum. Photosynthesis and magnetotaxis, as phenotypic characters, were not important in the classification of helical bacteria.  相似文献   

19.
20.
基于部分18S rDNA, 28S rDNA和COI基因序列的索科线虫亲缘关系   总被引:1,自引:0,他引:1  
通过PCR扩增获得我国常见昆虫病原索科线虫6属10种18S rDNA、28S rDNA(D3区)和COI基因序列,结合来自GenBank中6属10种索科线虫的18S rDNA同源序列,用邻接法和最大简约法构建系统进化树。结果显示:12属索科线虫分为三大类群,第一大类群是三种罗索属线虫(Romanomermis)先聚在一起,再与两索属(Amphimermis)和蛛索属(Aranimermis)线虫聚为一支;在第二大类群中,六索属(Hexamermis)、卵索属线虫(Ovomermis)和多索属(Agamermis)亲缘关系最近,先聚在一起,再与八腱索属(Octomyomermis)和Thaumamermis线虫聚为一支。第三大类群由索属(Mermis)和异索属(Allomermis)线虫以显著水平的置信度先聚在一起,再与蠓索属(Heleidomermis)和施特克尔霍夫索属(Strelkovimermis)线虫聚为一支。从遗传距离看,基于3个基因的数据集均显示索科线虫属内种间差异明显小于属间差异,武昌罗索线虫(R.wuchangensis)和食蚊罗索线虫(R.culicivorax)同属蚊幼寄生罗索属线虫,其种间的遗传距离最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号