首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toyoda Y  Tsuchida A  Iwami E  Miwa I 《Life sciences》2001,68(16):1867-1876
We examined the cytotoxicity of troglitazone toward cultured rat hepatocytes. The drug concentration- and time-dependently decreased cell viability and increased lactate dehydrogenase leakage from the cells. Troglitazone-induced cell death was characterized by "DNA ladders", condensation of nuclei, and a positive reaction to in situ nick-end labeling. The results indicate that troglitazone can cause apoptotic cell death in cultured rat hepatocytes.  相似文献   

2.
Excretion of glutathione conjugates by primary cultured rat hepatocytes   总被引:2,自引:0,他引:2  
Conjugation of xenobiotics with glutathione occurs commonly within the liver, and these glutathione conjugates are then preferentially excreted into bile. We have characterized this excretory process using primary cultured hepatocytes (24 h). 1-Chloro-2,4-dinitrobenzene rapidly entered the cells and formed a glutathione conjugate, S-(dinitrophenyl)glutathione, irrespective of the temperature of incubation. In contrast, the efflux of the glutathione conjugate was essentially absent in the cold but recovered rapidly upon rewarming of the cells. Therefore, initial rates of efflux of the conjugate at 37 degrees C were measured from cells preloaded biosynthetically at 10 degrees C. Efflux was a saturable process with respect to intracellular S-(dinitrophenyl)glutathione with an apparent Km of 0.58 +/- 0.12 mM and Vmax of 0.15 +/- 0.05 nmol/min/mg of protein. The excretion of S-(dinitrophenyl)glutathione had an energy of activation of 15.3 kcal/mol. The glutathione conjugate of p-nitrobenzylchloride when formed within the hepatocytes acted as a competitive inhibitor of S-(dinitrophenyl)glutathione efflux. Cultured hepatocytes, therefore, appeared to have a specific transport process for the excretion of glutathione conjugates. The addition of S-(dinitrophenyl)glutathione, but not GSH, GSSG, or methionine, to the medium caused a decrease in the rate of efflux of radiolabeled S-(dinitrophenyl)glutathione. The hepatocytes were able, however, to excrete the glutathione conjugate against an excess of extracellular S-(dinitrophenyl)glutathione. This observation suggested that extracellular S-(dinitrophenyl)glutathione, although capable of binding to the carrier, entered the hepatocytes quite slowly relative to rates of efflux. This carrier may function in a manner that would minimize the reuptake by hepatocytes of conjugates that have been excreted into the bile.  相似文献   

3.
Thiol groups of glutathione react with the organomercurial azo dye mercury orange at a faster rate than with -SH groups of proteins. This property makes possible visualization of glutathione in cells without appreciable interference from other -SH groups. To render this method useful for cytochemical localization of glutathione in plastic cultured cells, it was necessary to adapt this reaction to the specific characteristics of the biological samples to be assayed. First, the choice of a solvent that would allow a convenient solubility of the dye and at the same time be compatible with the plastic culture plate was crucial. Second, to avoid diffusion of glutathione out of the cell the procedure for staining cells was also important. Satisfactory results were obtained after 30-40 sec reaction with 50 microM mercury orange in acetone/water 9:1, v/v, at room temperature. Glutathione-mercury orange complexes exhibited orange fluorescence on excitation with blue light. No diffusion of glutathione out of the cells was observed, and the hepatocytes stained with the dye showed orange fluorescence which paralleled their glutathione content.  相似文献   

4.
mRNA levels of glutathione S-transferase (GST) subunits 3 and 4 were measured with a specific cDNA probe in adult rat hepatocytes maintained either in conventional culture or in coculture with rat liver epithelial cells. Four media conditions were used, i.e. with or without fetal calf serum (FCS) and with nicotinamide or dimethylsulfoxide (DMSO). When FCS was present in the culture medium, GST subunit 3 and 4 mRNAs were expressed at a level close to that found in freshly isolated hepatocytes during the whole culture period both in conventional culture and in coculture. All other culture conditions resulted in an increase of GST 3 and 4 mRNA levels. After exposure to phenobarbital an increase in GST 3 and 4 mRNA levels was demonstrated in both culture systems. Comparison with previous findings on the expression of GST subunits 1, 2 and 7 in the same culture conditions indicates that the different classes of GST are regulated independently.  相似文献   

5.
The mechanism of the periportal (p.p.) toxicity of allyl alcohol (AlOH) was investigated in p.p. and perivenous (p.v.) hepatocytes isolated by digitonin-collagenase perfusion. The distinct origin of the cell preparations was confirmed by the p.p./p.v. ratios of alanine aminotransferase (p.p./p.v. = 1.8), lactate dehydrogenase (1.3) and glutamine synthetase (0.10). The activity of alcohol dehydrogenase (ADH) was not markedly different in p.p. and p.v. cells. Both types of cells oxidized AlOH at a high but equal rate of about 3 mumol/(min.g cells). Concomitantly with rapid oxidation of 0.7 mM AlOH, glutathione (GSH) was depleted by about 95% and its secretion was completely inhibited in both cell types. Although the GSH content was partially restored during a subsequent 3-h incubation, cellular ATP and K+ content gradually decreased and the leakage of lactate dehydrogenase increased in both types of cells. However, the p.p. cells tended to resist AlOH in vitro better, probably due to their 26% higher GSH content after preincubation with L-methionine. Altering the partial pressure of oxygen in physiological range had no effect on the toxicity of AlOH. The results are contrary to the suggestions that the p.p. location of AlOH liver injury is caused by higher ADH activity or higher oxygen tension in the p.p. zone. Rather, the regiospecificity of the injury may be due to rapid uptake and oxidation of AlOH in the p.p. region.  相似文献   

6.
Effects of glutathione depletion on gluconeogenesis in isolated hepatocytes   总被引:1,自引:0,他引:1  
Glutathione-depleted hepatocytes, by incubation with diethylmaleate (DEM) or phorone (2,6-dimethyl-2,5-heptadiene-4-one), i.e., substrates of the GSH S-transferases (EC 2.5.1.18), showed rates of gluconeogenesis from various precursors significantly lower than controls; however the rate of glucose synthesis from fructose was similar to that of controls. Isolated hepatocytes from rats pretreated with those substrates 1 h before isolation to deplete hepatic glutathione (GSH) also showed a decrease of the rate of gluconeogenesis from lactate plus pyruvate. Incubation of hepatocytes with L-buthionine sulfoximine, a specific inhibitor of gamma-glutamyl-cysteine synthetase (EC 6.3.2.2), resulted in a decreased rate of gluconeogenesis from lactate plus pyruvate only when GSH values were lower than 1 mumol/g cells. Freeze-clamped livers from GSH-depleted rats showed a higher concentration of malate and glycerol 3-phosphate, indicating that GSH depletion probably affects phosphoenolpyruvate carboxykinase and glycerol-3-phosphate dehydrogenase activities. Several indicators of cell viability, such as lactate dehydrogenase leakage, malondialdehyde accumulation, ATP concentration, or urea synthesis from different precursors, were not affected by GSH depletion under the experimental conditions used here. Besides, the GSH/GSSG ratio remained unchanged in all cases.  相似文献   

7.
8.
9.
Antimycin A, KCN, and 1-methyl-4-phenylpyridinium ion (MPP+) all produced a marked depletion of cellular GSH levels in freshly isolated hepatocytes. This effect was consistently observed before the onset of cytotoxicity and seemed to be correlated with the loss of cellular ATP induced by these mitochondrial poisons. Concentrations of GSSG remained unchanged both intracellularly and extracellularly, indicating that oxidation was not involved in the events leading to GSH depletion. Approximately 40% of the decrease of intracellular GSH was accounted for by efflux of this tripeptide, assessed by increased formation of cysteinyl-glutathione when hepatocytes were incubated in the presence of 0.2 mM cystine. Therefore, an overall loss of glutathione was observed during incubations with all three inhibitors of mitochondrial function. Addition of 10 mM fructose to the incubation media substantially protected against GSH depletion caused by antimycin A, KCN, and MPP+. These results indicate that energy-dependent mechanisms are involved in the maintenance of intracellular GSH levels, and suggest that GSH depletion may be a general phenomenon associated with impairment of mitochondrial function.  相似文献   

10.
Lipid peroxidation, glutathione level and activity of glutathione-S-transferase were studied in liver and brain of rats 4 and 3 h after a single i.p. administration of 0, 25, 75, 100 mg/kg acrylamide or 0, 50, 100, 200, 600 mg/kg styrene, respectively. In liver both acrylamide and styrene caused an increase in lipid peroxidation and decrease in glutathione contents and activity of glutathione-S-transferase in a dose dependent manner, while in brain only acrylamide produced a decrease in glutathione content. The decrease in glutathione content was not always associated with increase of lipid peroxidation. The enhancement of lipid peroxidation occurred only when glutathione contents were depleted to certain critical levels. No effect of acrylamide or styrene was seen on lipid peroxidation under in vitro conditions. The addition of glutathione in the incubation mixture significantly inhibited the rate of lipid peroxidation of liver homogenates of acrylamide and styrene treated animals.The results suggest that enhancement of lipid peroxidation in liver on exposure to acrylamide or styrene is a consequence of depletion of glutathione to certain critical levels. The inhibition of glutathione-S-transferase activity by acrylamide and styrene suggests that detoxication of these neurotoxic compounds could be suppressed following acute exposure.  相似文献   

11.
Sialyltransferase activities in cultured rat hepatocytes   总被引:1,自引:0,他引:1  
Previous studies on the age and sex dependency of the ganglioside patterns in rat liver in vivo and the concomitant determination of the activities of some enzymes involved in these pathways revealed the prominent role of the sialylation of GM3 to GD3 in determining the flow to the mono (a)- and polysialo (b)-series, respectively. Here, the influence of hormones on the activities of GM3 and GD3 synthases in isolated hepatocytes was studied. The combination of several factors (insulin, glucagon, epidermal growth factor, glucocorticoids) was found to be necessary for maintaining in vivo activity levels of GD3- but not of GM3-synthase.  相似文献   

12.
Toxic injury from mercuric chloride in rat hepatocytes   总被引:7,自引:0,他引:7  
The relationship between cytosolic free Ca2+, mitochondrial membrane potential, ATP depletion, pyridine nucleotide fluorescence, cell surface blebbing, and cell death was evaluated in rat hepatocytes exposed to HgCl2. In cell suspensions, 50 microM HgCl2 oxidized pyridine nucleotides between 1/2 and 2 min, caused ATP depletion between 2 and 5 min, and produced an 89% loss of cell viability after 20 min. Rates of cell killing were identical in high (1.2 mM) and low (2.6 microM) Ca2+ buffers. Cytosolic free Ca2+ was determined in 1-day cultured hepatocytes by ratio imaging of Fura-2 employing multiparameter digitized video microscopy. In high Ca2+ medium, HgCl2 caused a 3-4-fold increase of free Ca2+ beginning after 6-7 min, but free Ca2+ did not change in low Ca2+ medium. Bleb formation occurred after about 4-5 min in both buffers prior to any increase of free Ca2+. Subsequently, in high Ca2+ medium, blebs became hot spots of free Ca2+ (greater than 600 nM). After about 2 min of exposure to HgCl2, rhodamine 123 fluorescence redistributed from mitochondrial to cytosolic compartments signifying collapse of the mitochondrial membrane potential. The results taken together demonstrate that bleb formation, ATP depletion, and the onset of cell death are not dependent on an increase of cytosolic free Ca2+. HgCl2 toxicity appears to be a consequence of inhibition of oxidative phosphorylation leading to ATP depletion and cell death.  相似文献   

13.
Glutathione (GSH) depletion by diethyl maleate (DEM) administration and its rapid repletion were associated with the development of a moderate acidosis in the rat. The acidosis observed after DEM treatment could be a consequence of an impairment of lactate metabolism. GSH-depleted rats also showed an increased urine pH and a higher bicarbonate fractional excretion compared with control rats. Renal bicarbonate excretion was magnified when blood bicarbonate levels were normalized by means of a bicarbonate infusion in GSH-depleted rats; however, the amount of bicarbonate excreted in the urine was a very small fraction (less than 5%) of the calculated filtered load. GSH-depleted rats failed to elevate the relation urine minus blood (U-B) pCO2 as compared with control rats when they were subjected to a high bicarbonate load to the distal portions of the nephron. All these data were consistent with a distal renal tubular acidosis due to GSH depletion which could participate in the maintenance of the systemic acidosis, although it is unlikely that it is the primary cause of the acidosis.  相似文献   

14.
15.
Zn(2+) has multiple implications in cellular metabolism, including free radicals metabolism and cell death by apoptosis. In the present study, we examined the role of Zn(2+) in the regulation of apoptosis in cultured rat hepatocytes. The chelation of Zn(2+) by a membrane permeable metal ion chelator, N, N, N', N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), induced apoptosis. Addition of ZnSO(4) prevented TPEN-induced apoptosis. Unlike the effect of TPEN, a membrane impermeable metal ion chelator, diethylenetriamine pentaacetic acid (DTPA), did not induce apoptosis, indicating that chelation of intracellular Zn(2+) was required to trigger apoptosis. Caspase-3-like proteolytic activity, a general biochemical mediator of apoptosis in a variety of cells and tissues, was also activated with the treatment of TPEN but not DTPA. TPEN treatment, but not DTPA, also resulted in the depletion of intracellular reduced glutathione (GSH) but addition of Zn(2+) recovered the GSH level. N-acetyl-L-cysteine (NAC), a thiol antioxidant, prevented TPEN-induced apoptosis. These results taken together suggest that intracellular Zn(2+) interfere with the apoptosis process, possibly through the regulation of cellular redox potential involving GSH.  相似文献   

16.
Lipid synthesis in permeabilized cultured rat hepatocytes   总被引:1,自引:0,他引:1  
Hepatic lipid synthesis was verified and studied in lysolecithin-permeabilized cultured rat hepatocytes and compared to that of intact liver cells. Triacylglycerol synthesis in permeabilized cells incubated in the presence of glycerol 3-phosphate and long chain fatty acids approached that of intact hepatocytes. Similarly, phosphatidylcholine synthesis in permeable cells incubated in the presence of exogenous CDP-choline was similar to that of intact hepatocytes and at the expense of microsomal neutral lipid synthesis. Phosphatidic acid accumulation in lysolecithin-permeabilized liver cells was remarkably increased as compared to that of intact cells, and its synthesis was mostly accounted for by the activity of mitochondrial glycerol-3-phosphate acyltransferase. Mitochondrial-generated phosphatidate was found to migrate to the endoplasmic reticulum, thus establishing a novel lipid esterification pathway which begins in mitochondrial glycerol 3-phosphate acylation and results in microsomal triacylglycerol and phospholipid synthesis. The free access of permeabilized liver cells to substrates and modulators of lipid synthesis, while maintaining an overall synthetic pattern similar to that of intact hepatocytes, makes them a system of choice for studying hepatic lipid synthesis in general and the microsomal/mitochondrial distribution of fluxes in particular.  相似文献   

17.
Oxygen uptake rates in cultured rat hepatocytes   总被引:5,自引:0,他引:5  
One potential treatment of acute liver failure involves the use of an extracorporeal device composed of functional hepatocytes. A major issue in the design of such a large-scale device is providing the hepatocytes with a sufficient supply of oxygen and other nutrients. In this study, we have designed and characterized a simple perfusion system hepatocytes using this system. The OUR of hepatocytes was determined during the first day after seeding on a single collagen gel and during the long-term stable culture after the addition of a top layer of collagen. The OUR increased to 20.7 +/- 0.57 pmol/sec/mug DNA during the first 13 hours of culture on a single collagen gel, while during the next 11 hours, the OUR declined to 10.6 +/- 1.5 pmol/sec/mug DNA. In parallel with the increase in OUR during the first 10 hours, we observed significant cell spreading, suggesting that the oxygen supply to the cells may be critical for the spreading and adaptation of the anchorage-dependent hepatocytes following isolation. Addition of a top layer of collagen to hepatocyte cultures for 24 hours of culture on a single collagen layer resulted in a stable OUR for 15 days. These results indicate that OUR of hepatocytes in culture may vary depending on the phase of culture (i.e., early vs. late) and on the extracellular environment. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
Modulation of functional activities in cultured rat hepatocytes   总被引:8,自引:0,他引:8  
Rat hepatocytes isolated by enzymatic dissociation of the liver must attach in order to survive for more than a few hours. In conventional culture conditions, they rapidly lose their highly differentiated functions, e.g. adult isozymic forms, enzyme response to specific hormones and cytochrome P-450-dependent monooxygenase activities. Incompletely differentiated cells such as perinatal and regenerating hepatocytes, can transiently exhibit a more differentiated state. Therefore, regulation of hepatic functions, particularly enzyme activities cannot be studied for more than a few days. Hepatocyte survival rate and maintenance of specific functions are dependent on nutrient composition of the medium as well as the substrate. Complex matrices, particularly that derived from the connective liver biomatrix, appear to have an important favorable effect. However, regardless of culture conditions specific functions cannot be quantitatively maintained for more than several days. Recent observations strongly suggest that such a problem may be overcome by mimicking in vivo specific cell-cell interactions. Thus when co-cultured with a liver epithelial cell line, probably derived from biliary ductular cells, adult hepatocytes remain able to synthesize high levels of albumin and to conjugate drugs. In these conditions, the cells secrete an abundant heterogeneous extracellular material. The co-cultures can be maintained in a serum-free medium and specific liver functions can be altered experimentally. Such a model could be appropriate for studying long-term induction and modulation of liver enzyme activities under defined experimental conditions.  相似文献   

19.
We studied the effect of the depletion of glutathione on the synthesis of proteoglycan and collagen in cultured chick chondrocytes. When the cultured chondrocytes were incubated with 1 mM buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase, the intracellular glutathione level markedly dropped within 12 h with no loss of cell viability. Incorporation of 35SO2-4 into proteoglycan was lowered in the presence of BSO. When the 35S-labeled proteoglycans were separated into two fractions by glycerol density gradient centrifugation, the inhibitory effect of BSO on the synthesis of proteoglycan was greater in the fast-sedimenting proteoglycan fraction, which consisted mainly of cartilage specific large proteoglycan (PG-H), than in the slowly sedimenting proteoglycan fraction. The inhibition by BSO of the synthesis of core protein-free glycosaminoglycan chains primed by p-nitrophenyl-beta-D-xyloside was smaller than the inhibition of the synthesis of proteoglycan. Analysis of glycosaminoglycans labeled with [3H]glucosamine indicated that the treatment of chondrocytes with BSO resulted in a small increase in the proportion of synthesis of hyaluronic acid to the synthesis of total glycosaminoglycan. The incorporation of [3H]proline into collagen was also inhibited by BSO. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 3H-labeled collagen showed that, in the presence of BSO, processing of Type II collagen appeared to slow down and the proportion of Type X collagen synthesis was reduced.  相似文献   

20.
Xylitol is known to cause hepatic ATP catabolism by inducing the trapping of Pi in the form of glycerol 3-P as a consequence of an increase in the NADH:NAD+ ratio, resulting from the oxidation of xylitol to D-xylulose. The question was therefore raised whether D-xylulose also depletes hepatic ATP. In isolated rat hepatocytes, 5 mM D-xylulose decreased ATP by 80% within 5 min compared to 40% with 5 mM xylitol. Intracellular Pi decreased by 70% within the same time interval with both compounds, but was restored three-fold faster with D-xylulose. The rate of utilization of D-xylulose reached 5 mumol.min-1.g-1 of cells, as compared with 1.5 for xylitol, indicating that reduction of xylitol into D-xylulose is a rate-limiting step in the metabolism of the polyol. D-Xylulose barely modified the concentration of glycerol 3-P but increased xylulose 5-P from 0.02 to 0.5 mumol/g within 5 min. The main cause of the ATP- and Pi-depleting effects of D-xylulose was found to be an accumulation of sedoheptulose 7-P from a basal value of 0.1 to 5 mumol/g of cells after 10 min. Ribose 5-P increased from 0.03 to 0.5 mumol/g at 5 min. Ribose 1-P also accumulated, albeit outside of the cells. This extracellular accumulation can be explained by the release of intracellular purine nucleoside phosphorylase from damaged hepatocytes acting on inosine that had diffused out of the cells. Smaller increases in the concentrations of sedoheptulose 7-P and pentose phosphates were recorded after incubations of the cells with xylitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号