首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

2.
Carbachol (CCh), a muscarinic-cholinergic agonist, increased both cytosolic free calcium concentration ([Ca2+]i) and amylase release in rat parotid acinar cells or acini in a dose-dependent manner. Treatment of acinar cells with the intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), or the intracellular Ca2+ chelator, 1,2-bis(O-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (BAPTA), strongly attenuated the increases in [Ca2+]i evoked by CCh, but amylase release from acini was not significantly suppressed by the treatment with TMB-8 or BAPTA. Low concentrations (0.02-0.5 microM) of ionomycin, a Ca2+ ionophore, caused increases in [Ca2+]i comparable to those induced by CCh, but the same concentrations had only a little effect on amylase release. The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated amylase release in quantities similar to those induced by CCh, although TPA alone did not cause any change in [Ca2+]i. Combined addition of TPA and ionomycin potentiated only modestly amylase release stimulated by TPA alone. Staurosporine, a protein kinase C-inhibitor, similarly inhibited both the CCh- and TPA-induced amylase release. These results suggest that an increase in [Ca2+]i elicited by CCh does not play an essential role for inducing amylase release in rat parotid acini. Amylase release by muscarinic stimulation may be mediated mainly by activation of protein kinase C.  相似文献   

3.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

4.
Previous studies demonstrated that Ca2+ ionophores augment the pancreatic enzyme secretion caused by phorbol esters. The present study was performed to determine the nature of the cellular Ca2+ effects responsible for the augmentation. Relatively low concentrations (0.3-1.0 microM) of the nonfluorescent Ca2+ ionophore, 4-bromo-A23187 (Br-A23187), did not measurably increase free cytosolic Ca2+ ([Ca2+]i) and caused little or no enzyme release from guinea pig pancreatic acini. However, these concentrations of Br-A23187 augmented the amylase release caused by the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA). This augmentation occurred in the absence of extracellular Ca2+ as long as the intracellular agonist-sensitive pool contained Ca2+. Greater concentrations of Br-A23187 (3-10 microM) alone caused transient increases in [Ca2+]i and transient increases in amylase release. Although not resulting in an increase in [Ca2+]i, the low concentrations of Br-A23187 caused release of Ca2+ from the intracellular agonist-sensitive pool. These results suggest that Ca2+ mediates enzyme release by two distinct mechanisms in the pancreatic acinar cell. First, an increase in [Ca2+]i alone mediates enzyme release. Second, Ca2+ release from the agonist-sensitive pool not resulting in a measurable increase in [Ca2+]i augments enzyme release stimulated by a phorbol ester. The second effect of Ca2+ may be due to a small localized change in cell Ca2+ or an induction of cytosolic Ca2+ oscillations.  相似文献   

5.
Mouse pancreatic acini were permeabilized with streptolysin O to investigate amylase secretion stimulated by various intracellular mediators and the kinetics of secretion as a function of temperature. Amylase secretion was temperature dependent in that the initial rate of Ca2(+)-stimulated secretion increased with increasing temperature. In addition, there was no enhancement of Ca2(+)-stimulated secretion by GTP[gamma S] at 14 degrees C, while enhancement was maximal at 30 degrees C. GTP[gamma S]-mediated enhancement of secretion at a given temperature was mostly due to sustained secretion with a small increase in secretory rate. At 30 degrees C Ca2(+)-stimulated secretion was also enhanced by cAMP and phorbol ester (TPA) to similar extents as by GTP[gamma S]. The maximally effective concentration of cAMP was 1-10 microM in the presence of 0.1 mM isobutylmethylxanthine. The enhancements of Ca2(+)-stimulated amylase secretion by all combinations of cAMP (100 microM plus 0.1 mM isobutylmethylxanthine), TPA (1 microM), and GTP[gamma S] (30 microM) were fully additive. In Ca2(+)-free buffer, cAMP, TPA or GTP[gamma S] individually had no effect on amylase secretion. Together, TPA and GTP[gamma S] stimulated Ca2(+)-independent secretion, which was 187 +/- 38% of basal. Cyclic AMP together with TPA and GTP[gamma S] in the absence of Ca2+ stimulated 329 +/- 30% of basal secretion. Ca2(+)-stimulated amylase secretion was decreased about 50% by metabolic inhibition, while the enhancement by cAMP, TPA or GTP[gamma S] was totally blocked by metabolic inhibitors. These data demonstrate that amylase secretion in the acinar cell is mediated by multiple intracellular pathways which act in parallel and probably converge at a distal step in the exocytotic process.  相似文献   

6.
Cytosolic free calcium concentrations ([Ca2+]i) and amylase secretion were measured in isolated rat pancreatic acini loaded with the intracellularly trapped fluorescent indicator quin2. Both caerulein and carbamoylcholine caused a rapid increase in [Ca2+]i, with a maximal 3-fold increase at 10(-9) M-caerulein and 10(-4) M-carbamoylcholine. However, caerulein (10(-12) M and 10(-11) M) as well as carbamoylcholine (10(-7) M) caused a significant stimulation of amylase release, while not inducing any detectable rise in [Ca2+]i. Changes in [Ca2+]i after addition of either secretagogue were transient and did not last more than 2-3 min. By contrast, when amylase secretion was monitored as a function of time, two distinct secretory phases could be observed upon addition of either carbamoylcholine (10(-5) M) or caerulein (10(-10) M). An initial, rapid phase (0-5 min) which caused a 6-7-fold increase above basal, followed by a sustained (5-30 min), but less marked, secretory rate (2-3-fold above basal). Addition of atropine (10(-4) M) 5 min after carbamoylcholine (10(-5) M) (i.e. after termination of the rise in [Ca2+]i and of the first secretory phase) did not cause any significant change in [Ca2+]i, while significantly inhibiting amylase secretion from 5 to 30 min to the same rate observed in the absence of the secretagogue. These results show that caerulein and carbamoylcholine, two agents thought to activate secretion mainly through mobilization of Ca2+ from intracellular stores, are capable of eliciting amylase secretion independently of a concomitant rise in [Ca2+]i. Furthermore, with both secretagogues the rise in [Ca2+]i, when observed, was only transient, while the stimulation of amylase release was sustained.  相似文献   

7.
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.  相似文献   

8.
Regulation of protein phosphorylation in isolated pancreatic acini by the intracellular messengers Ca2+ and diacylglycerol was studied by using the Ca2+ ionophore A23187 and the tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate. As assessed by two-dimensional polyacrylamide-gel electrophoresis, the phorbol ester (1 microM) and Ca2+ ionophore (2 microM) altered the phosphorylation of distinct sets of proteins between Mr 83,000 and 23,000 in mouse and guinea-pig acini. The phorbol ester increased the phosphorylation of four proteins, whereas the ionophore increased the phosphorylation of two proteins and, in mouse acini, decreased the phosphorylation of one other protein. In addition, the phorbol ester and ionophore each caused the dephosphorylation of two proteins, of Mr 20,000 and 20,500. Administered together, these agents reproduced the changes in phosphorylation induced by the cholinergic agonist carbamoylcholine. The effects of the phorbol ester and ionophore on acinar amylase release were also studied. In mouse pancreatic acini, a maximally effective concentration of phorbol ester (1 microM) produced a secretory response that was only 28% of that produced by a maximally effective concentration of carbamoylcholine, whereas the ionophore (0.3 microM) stimulated amylase release to two-thirds of the maximal response to carbamoylcholine. In contrast, in guinea-pig acini, the phorbol ester and carbamoylcholine evoked similar maximal secretory responses, whereas the maximal secretory response to the ionophore was only 35% of that to carbamoylcholine. Combination of phorbol ester and ionophore resulted in a modest synergistic effect on amylase release in both species. It is concluded that cholinergic agonists act via both diacylglycerol and Ca2+ to regulate pancreatic protein phosphorylation, but that synergism between these intracellular messengers is of limited importance in stimulating enzyme secretion.  相似文献   

9.
Pretreatment of adrenal chromaffin cells with protein kinase C activators, i.e. 12-O-tetradecanoyl phorbol-13-acetate (TPA) and 1-oleoyl 2-acetyl glycerol (OAG), partially inhibited carbamylcholine (CCh)-induced rise in intracellular free Ca2+ concentration ([Ca2+]i). The apparent IC50 values of TPA and OAG were 3 nM and 25 microM, respectively. The effect of TPA on the CCh-induced rise in [Ca2+]i was overcome by pretreatment of the cells with a protein kinase C inhibitor, 1-(5-isoquinidinesulfonyl)-2-methylpiperazine hydrochloride (H-7). In contrast, KCl-induced rise in [Ca2+]i was not affected by pretreating the cells with TPA or OAG. An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate failed to affect the CCh-induced rise in [Ca2+]i. CCh-induced 45Ca2+ uptake was also partially inhibited by pretreatment of the cells with TPA or OAG, but KCl-induced 45Ca2+ uptake was not affected by these pretreatments. These results indicate that protein kinase C activation causes an uncoupling of signal transduction between the nicotinic receptors and Ca2+ channels.  相似文献   

10.
The free calcium ion concentration, [Ca2+]i, in the cytoplasmic matrix of quin2-loaded neutrophil leucocytes increases rapidly after addition of concanavalin A. This increase is effectively abolished by a short (3 min) preincubation with 10 nM-TPA (12-O-tetradecanoylphorbol 13-acetate). TPA also inhibits a [Ca2+]i rise of similar magnitude induced by low concentrations (10 nM) of calcium ionophore A23187, suggesting that phorbol ester does not interfere with a physiological influx mechanism. To investigate the effects of TPA further, cells were depleted of Ca2+ during quin2 loading and then re-equilibrated with normal extracellular [Ca2+]. The return to a stable [Ca2+]i value was preceded by a transient overshoot in [Ca2+]i, implying delayed activation of an efflux mechanism by rising [Ca2+]i. TPA abolished the transient, suggesting preactivation by TPA of the efflux mechanism before Ca2+ influx. TPA also stimulates net Ca2+ efflux from neutrophils and neutrophil cytoplasts. These observations are consistent with the thesis that TPA stimulates a Ca2+-efflux mechanism in these cells.  相似文献   

11.
At concentrations greater than 0.01 microM, thapsigargin (ThG) dose-dependently caused an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in rat parotid acinar cells, as measured by the fluorescent Ca(2+)-indicator fura-2. In the absence of extracellular Ca2+, a transient increase in [Ca2+]i by ThG was observed, and subsequent addition of carbachol (CCh) did not produce a further [Ca2+]i response, suggesting that ThG released Ca2+ from the CCh-sensitive intracellular Ca2+ pool. Since ThG did not stimulate formation of inositol phosphates, the ThG-induced Ca2+ mobilization is independent of phosphoinositide breakdown. High concentrations (greater than 0.1 microM) of ThG induced amylase release from rat parotide acini, but the effect was very poor as compared with that of CCh or the protein kinase C activator, PMA (phorbol 12-myristate 13-acetate). Combined addition of ThG and PMA modestly potentiated amylase release induced by PMA alone. These results support the view that amylase release by muscarinic stimulation is mediated mainly by activation of protein kinase C rather than a rise in [Ca2+]i, although Ca2+ may modulate the secretory response.  相似文献   

12.
In studying the regulation of insulin secretion by phorbol esters, we examined their effects on the cytosolic free Ca2+ concentration ([Ca2+]i), using the Ca2+ indicator fura-2 in the rat insulin-secreting beta-cell line RINm5F. [Ca2+]i was measured in parallel with the rate of insulin release. 50 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), which may act via protein kinase C, stimulated insulin release and caused an increase in [Ca2+]i. Ca2+-free conditions eliminated the increase in [Ca2+]i and resulted in a reduced stimulation of insulin release by TPA. The Ca2+ channel blocker nitrendipine (300 nM) inhibited both the increase in [Ca2+]i and the increased rate of insulin secretion. Another phorbol ester, 4 beta-phorbol 12,13-didecanoate, which activates protein kinase C, also induced an increase in [Ca2+]i and in the rate of insulin release, while 4 alpha-phorbol 12,13-didecanoate, which fails to stimulate protein kinase C, was without effect. Further studies with bis-oxonol as an indicator of membrane potential showed that TPA depolarized the beta-cell plasma membrane. From these results, it is concluded that TPA depolarizes the plasma membrane, induces the opening of Ca2+ channels in the RINm5F beta-cell plasma membrane, increases [Ca2+]i, and results in insulin secretion. The action of TPA was next compared with that of a depolarizing concentration of KC1 (25 mM), which stimulates insulin secretion simply by opening Ca2+ channels. TPA consistently elicited less depolarization, a smaller rise of [Ca2+]i, but a greater release of insulin than KC1. Therefore an additional action of TPA is suggested, which potentiates the action of the elevated [Ca2+]i on insulin secretion.  相似文献   

13.
14.
The abilities of three calcium ionophores (A23187, 4-bromo-A23187, and ionomycin) to modulate the respiratory burst of neutrophils induced by phorbol ester and to increase the concentration of free intracellular Ca2+ ([Ca2+]i) were compared. The production of reactive oxygen species (ROS) was determined by luminol-dependent chemiluminescence and [Ca2+]i was determined with the Fura-2 fluorescent probe. A23187 (0.05-2 microM) and ionomycin (0.001-0.5 microM) but not 4-bromo-A23187 amplified 3-4-fold the respiratory burst induced by phorbol ester. The integral response (total production of ROS over 6 min) had a bell-shaped dependence on the concentration of ionomycin and A23187 with increase and decrease at low and high concentrations of the ionophores, respectively. The maximal effect was found at 0.5 microM ionomycin and 2 microM A23187, these concentrations resulting in transient increases in [Ca2+]i to 1776 +/- 197 and 955 +/- 27 nM, respectively. The ionophores had no effect in calcium-free media, though they increased [Ca2+]i to approximately 400 nM through the mobilization of intracellular Ca2+. In cells with exhausted stores of Ca2+, the addition of 1.5 mM Ca2+ combined with phorbol ester amplified twofold the production of ROS. The inhibition of phospholipase A2 with 4-bromophenacyl bromide significantly decreased the production of ROS. Thus, the entrance of Ca2+ and generation of arachidonic acid under the influence of phospholipase A2 are necessary for the ionophore-induced priming of production of ROS during cell activation with phorbol esters.  相似文献   

15.
The effects of protein kinase C stimulation on free cytosolic Ca2+ [( Ca2+]i) were studied in Fura 2-loaded UMR-106 cells. Stimulation of the protein kinase C with the tumor-promoting phorbol esters 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13-diacetate or 1-oleoyl-2-acetylglycerol was followed by an increase in [Ca2+]i. The protein kinase C-induced increase in [Ca2+]i has a lag period, the duration of which was dependent on the stimulant and medium Ca2+ concentrations. With 2 microM TPA, the rise in [Ca2+]i peaked within 1.5 min, after which [Ca2+]i returned partially toward base line. The increase in [Ca2+]i was absolutely dependent on the presence of medium Ca2+ and was inhibited by the Ca2+ channel blockers nicardipine and verapamil. Cell stimulation also results in Ca2+ release from intracellular pool(s) which appears to be mediated by a Ca2+-dependent Ca2+ release mechanism. The reduction in [Ca2+]i was due to channel inactivation. Pretreatment of the cells with 1 nM TPA, 2 units/ml parathyroid hormone (PTH), or 15 microM forskolin blocked the effect of 2 microM TPA on [Ca2+]i. TPA and PTH were more potent inhibitors than was forskolin. The properties of this channel are compared to the cAMP-independent PTH-stimulated Ca2+ channel present in these cells.  相似文献   

16.
We have used phorbol esters, such as 12-O-tetradecanoyl phorbol 13-acetate (TPA), to study the actions of protein kinase C (a TPA receptor) on cytosolic free Ca2+ concentrations [( Ca2+]i) and hormone secretion in rat pituitary cells (GH cells), and to elucidate the role of diacylglycerol (a protein kinase C activator) in thyrotropin-releasing hormone (TRH) action. TPA had a dual action on [Ca2+]i, inducing a stimulatory phase from 300 (basal) to 420 nM, which was interrupted in 30-60 s by an inhibitory phase which transiently lowered [Ca2+]i to 240 nM and rose in 3-10 min to yield the stimulatory phase. TPA-mediated changes in [Ca2+]i were induced by other phorbol esters and mezerein but not by phorbol or activators of kinases different from protein kinase C. Both phases of TPA action on [Ca2+]i were abolished by 5-min pretreatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (1.33 mM) or Ca2+ channel antagonists (verapamil or nifedipine). TPA also enhanced the rate of sustained hormone secretion without inducing a burst of hormone release (unlike TRH). Also, stimulation of secretion by TPA was not inhibited by Ca2+ channel antagonists and was resistant (10%) to EGTA. Simultaneous addition of TPA with the ionophore ionomycin (100 nM) reconstituted a TRH-like spike, nadir and plateau of [Ca2+]i. Ionomycin generated the spike in [Ca2+]i by releasing TRH-sensitive Ca2+ stores, while TPA induced the nadir (inhibitory phase), and a nifedipine/verapamil-sensitive plateau of [Ca2+]i (stimulatory phase). Concurrent (but not separate) addition of ionomycin and TPA also reconstituted a TRH-like burst of hormone secretion. These and previous results indicate that activation of protein kinase C by TPA or diacylglycerol (which is elevated by TRH) and a simultaneous spike in [Ca2+]i are required for burst secretion. Diacylglycerol may also mediate the TRH-induced nadir and plateau of [Ca2+]i; the latter process contributes to Ca2+-dependent stimulation of steady secretion by TRH.  相似文献   

17.
K Swann  Y Igusa    S Miyazaki 《The EMBO journal》1989,8(12):3711-3718
Hamster eggs undergo repetitive increases in cytoplasmic free calcium concentration ([Ca2+]i) at fertilization or after injecting guanosine-5'-0-(3-thiotriphosphate) (GTP[S]). We report the effects of protein kinase C (PKC) agonists and antagonists on these repetitive [Ca2+]i transients as measured by their associated membrane potential hyperpolarizing responses (HRs). Iontophoretic injection of GTP[S] into unfertilized eggs caused a series of repetitive HRs that declined in amplitude with time. Continuous injection of inositol 1,4,5-trisphosphate (InsP3) also caused a series of repetitive HRs, but these HRs declined in amplitude less markedly. GTP[S]-induced HRs were inhibited by the PKC agonists phorbol 12-myristate 13-acetate (TPA) (100 nM) and 1,2-dioctanoyl-glycerol (diC8) (250 microM). Conversely the PKC inhibitor sphingosine (10 microM) enhanced the number of large HRs after GTP[S] injection. TPA or sphingosine did not alter InsP3-induced HRs. We suggest that G-protein-mediated InsP3 production causes repetitive [Ca2+]i transients but that GTP[S] injection stimulates a negative feedback loop involving PKC. Adding TPA (100 nM) before insemination caused a reduction in the frequency of HRs at fertilization, but neither TPA nor sphingosine affected the frequency or size of HRs when they were added after the start of fertilization. Fertilizing sperm may stimulate G-protein-mediated InsP3 production in a way that precludes feedback inhibition by PKC.  相似文献   

18.
Changes in free cytosolic calcium were measured in UMR-106 cells in response to parathyroid hormone (PTH) stimulation. Bovine PTH-(1-34) induced an increase in [Ca2+]i with the contour of the rise in [Ca2+]i occurring in three successive phases: a rapid increase in [Ca2+]i occurring within seconds, rapid decrement in [Ca2+]i to near-resting levels within 1 min, and slow increment in [Ca2+]i. Phase one and phase three increases in [Ca2+]i were dependent on medium calcium. The phase one rise in [Ca2+]i was inhibitable by the calcium channel blockers lanthanum and verapamil. Only the phase one rise in [Ca2+]i was blocked by preincubation of the cells with the phorbol ester, phorbol 12-myristate 13-acetate. This channel was also blocked when cellular cAMP levels were increased prior to PTH stimulation. The phase two decrement of [Ca2+]i was due to the rapid inactivation of the phase one calcium channel. The phase three rise in [Ca2+]i was mediated by cellular cAMP levels. This cAMP-dependent Ca2+ channel was insensitive to pretreatment of the cells with phorbol diesters and showed low sensitivity to Ca2+ channel blockers. It is concluded that UMR-106 cells respond to PTH stimulation by the activation of a cAMP-independent Ca2+ channel. This channel rapidly inactivates. The subsequent PTH-dependent increase in cellular cAMP is followed by activation of a cAMP-dependent Ca2+ channel resulting in a slow rise in [Ca2+]i.  相似文献   

19.
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.  相似文献   

20.
We have used GH3 cells permeabilized by electric field discharge to examine the effects of Ca2+ and protein kinase C activators (phorbol ester and diacylglycerol) on prolactin (PRL) release. Ca2+ was found to stimulate PRL release approximately 4 fold at 3 microM Ca2+ with a half-maximal response at approximately .5 microM estimated free Ca2+. 12-O-tetradecanoyl phorbol-13-acetate and 1-oleoyl-2-acetyl-sn-glycerol stimulated PRL release throughout a range of Ca2+ concentrations (1 nM -3 microM), but stimulation was greater at higher Ca2+ concentrations (.1 microM to 1 microM). Both agents decreased by 1.8 fold the apparent [Ca2+] at which half-maximal stimulation of secretion occurred. Quin 2 was used to measure the free [Ca2+] of intact and permeable cells; PRL secretion at a free [Ca2+] corresponding to resting cytoplasmic [Ca2+] was 10% of maximal, while secretion at the [Ca2+] corresponding to the Ca2+ spike induced by thyrotropin-releasing hormone was approximately 25% of maximal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号