首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurogenetic disorders that are caused by the loss of function of imprinted genes in 15q11-q13. In a small group of patients, the disease is due to aberrant imprinting and gene silencing. Here, we describe the molecular analysis of 51 patients with PWS and 85 patients with AS who have such a defect. Seven patients with PWS (14%) and eight patients with AS (9%) were found to have an imprinting center (IC) deletion. Sequence analysis of 32 patients with PWS and no IC deletion and 66 patients with AS and no IC deletion did not reveal any point mutation in the critical IC elements. The presence of a faint methylated band in 27% of patients with AS and no IC deletion suggests that these patients are mosaic for an imprinting defect that occurred after fertilization. In patients with AS, the imprinting defect occurred on the chromosome that was inherited from either the maternal grandfather or grandmother; however, in all informative patients with PWS and no IC deletion, the imprinting defect occurred on the chromosome inherited from the paternal grandmother. These data suggest that this imprinting defect results from a failure to erase the maternal imprint during spermatogenesis.  相似文献   

2.
The Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic diseases that are caused by the loss of function of imprinted genes on the proximal long arm of human chromosome 15. In a few percent of patients with PWS and AS, the disease is due to aberrant imprinting and gene silencing. In patients with PWS and an imprinting defect, the paternal chromosome carries a maternal imprint. In patients with AS and an imprinting defect, the maternal chromosome carries a paternal imprint. Imprinting defects offer a unique opportunity to identify some of the factors and mechanisms involved in imprint erasure, resetting and maintenance. In approximately 10% of cases the imprinting defects are caused by a microdeletion affecting the 5' end of the SNURF-SNRPN locus. These deletions define the 15q imprinting center (IC), which regulates imprinting in the whole domain. These findings have been confirmed and extended in knock-out and transgenic mice. In the majority of patients with an imprinting defect, the incorrect imprint has arisen without a DNA sequence change, possibly as the result of stochastic errors of the imprinting process or the effect of exogenous factors.  相似文献   

3.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic disorders caused by the loss of function of imprinted genes in the chromosomal region 15q11q13. An approximately 2 Mb region inside 15q11q13 is subject to genomic imprinting. As a consequence the maternal and paternal copies in this region are different in DNA methylation and gene expression. The most frequent genetic lesions in both disorders are an interstitial de novo deletion of the chromosomal region 15q11q13, uniparental disomy 15, an imprinting defect or, in the case of AS, a mutation of the UBE3A gene. Microdeletions in a small number of patients with PWS and AS with an imprinting defect have led to the identification of the chromosome 15 imprinting centre (IC) upstream of the SNURF-SNRPN gene, which acts in cis to regulate imprinting in the whole 15q imprinted domain. The IC consists of two critical elements: one in the more centromeric part which is deleted in patients with AS and which is thought to be responsible for the establishment of imprinting in the female germ line, and one in the more telomeric part which is deleted in patients with PWS and which is required to maintain the paternal imprint.  相似文献   

4.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

5.
Imprinting in 15q11-q13 is controlled by a bipartite imprinting center (IC), which maps to the SNURF-SNRPN locus. Deletions of the exon 1 region impair the establishment or maintenance of the paternal imprint and can cause Prader-Willi syndrome (PWS). Deletions of a region 35 kb upstream of exon 1 impair maternal imprinting and can cause Angelman syndrome (AS). So far, in all affected sibs with an imprinting defect, an inherited IC deletion was identified. We report on two sibs with AS who do not have an IC deletion but instead have a 1-1.5 Mb inversion separating the two IC elements. The inversion is transmitted silently through the male germline but impairs maternal imprinting after transmission through the female germline. Our findings suggest that the close proximity and/or the correct orientation of the two IC elements are/is necessary for the establishment of a maternal imprint.  相似文献   

6.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders resulting from deficiency of imprinted gene expression from paternal or maternal chromosome 15q11-15q13, respectively. In humans, expression of the imprinted genes is under control of a bipartite cis-acting imprinting center (IC). Families with deletions causing PWS imprinting defects localize the PWS-IC to 4.3 kb overlapping with SNRPN exon 1. Families with deletions causing AS imprinting defects localize the AS-IC to 880 bp 35 kb upstream of the PWS-IC. We report two mouse mutations resulting in defects similar to that seen in AS patients with deletion of the AS-IC. An insertion/duplication mutation 13 kb upstream of Snrpn exon 1 resulted in lack of methylation at the maternal Snrpn promoter, activation of maternally repressed genes, and decreased expression of paternally repressed genes. The acquisition of a paternal epigenotype on the maternal chromosome in the mutant mice was demonstrated by the ability to rescue the lethality and growth retardation in a mouse model of a PWS imprinting defect. A second mutation, an 80-kb deletion extending upstream of the first mutation, caused a similar imprinting defect with variable penetrance. These results suggest that there is a mouse functional equivalent to the human AS-IC.  相似文献   

7.
The Prader-Willi syndrome (PWS)/Angelman syndrome (AS) region, on human chromosome 15q11-q13, exemplifies coordinate control of imprinted gene expression over a large chromosomal domain. Establishment of the paternal state of the region requires the PWS imprinting center (PWS-IC); establishment of the maternal state requires the AS-IC. Cytosine methylation of the PWS-IC, which occurs during oogenesis in mice, occurs only after fertilization in humans, so this modification cannot be the gametic imprint for the PWS/AS region in humans. Here, we demonstrate that the PWS-IC shows parent-specific complementary patterns of H3 lysine 9 (Lys9) and H3 lysine 4 (Lys4) methylation. H3 Lys9 is methylated on the maternal copy of the PWS-IC, and H3 Lys4 is methylated on the paternal copy. We suggest that H3 Lys9 methylation is a candidate maternal gametic imprint for this region, and we show how changes in chromatin packaging during the life cycle of mammals provide a means of erasing such an imprint in the male germline.  相似文献   

8.
Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS.  相似文献   

9.
10.
11.
The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. We have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, we have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. We propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region.  相似文献   

12.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder that arises from lack of expression of paternally inherited genes known to be imprinted and located in the chromosome 15q11-q13 region. PWS is considered the most common syndromal cause of life-threatening obesity and is estimated at 1 in 10,000 to 20,000 individuals. A de novo paternally derived chromosome 15q11-q13 deletion is the cause of PWS in about 70% of cases, and maternal disomy 15 accounts for about 25% of cases. The remaining cases of PWS result either from genomic imprinting defects (microdeletions or epimutations) of the imprinting centre in the 15q11-q13 region or from chromosome 15 translocations. Here, we describe the clinical presentation of PWS, review the current understanding of causative cytogenetic and molecular genetic mechanisms, and discuss future directions for research.  相似文献   

13.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

14.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are well-recognized examples of imprinting in humans. They occur most commonly with paternal and maternal 15q11-13 deletions, but also with maternal and paternal disomy. Both syndromes have also occurred more rarely in association with smaller deletions seemingly causing abnormal imprinting. A putative mouse model of PWS, occurring with maternal duplication (partial maternal disomy) for the homologous region, has been described in a previous paper but, although a second imprinting effect that could have provided a mouse model of AS was found, it appeared to be associated with a slightly different region of the chromosome. Here, we provide evidence that the same region is in fact involved and further demonstrate that animals with paternal duplication for the region exhibit characteristics of AS patients. A mouse model of AS is, therefore, strongly indicated. Received: 15 December 1996 / Accepted: 31 January 1997  相似文献   

15.
In gene targeting studies of the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) domain in mouse ES cells, we recovered only recombinants with the paternal allele for constructs at exons 2 or 3 of the imprinted, maternally silenced Snurf-Snrpn gene. These sites lie close to the imprinting center (IC) for this domain. In contrast, recombinants for Ube3a within the same imprinted domain were recovered with equal frequency on the maternal and paternal alleles. In addition, gene targeting of the paternal allele for Snurf-Snrpn resulted in partial or complete demethylation in trans with activation of expression for the previously silenced maternal allele. The imprint switching of the maternal allele in trans is not readily explained by competition for trans-acting factors and adds to a growing body of evidence indicating homologous association of oppositely imprinted chromatin domains in somatic mammalian cells.  相似文献   

16.
Parental genomes have reciprocal phenotypic effects during development in the mouse because they are programmed (imprinted) with germ line-specific epigenetic modifications. These epigenetic modifications are inherited after fertilisation and they determine whether the maternal or the paternal allele of an 'imprinted' gene is expressed. Four such imprinted genes have so far been identified; the paternal genes of Igf2, and Snrpn, and the maternal genes of Igf2r and H19 are preferentially expressed during development. Igf2 and H19 are closely linked on chromosome 7 and show remarkably similar temporal and spatial patterns of expression. A mechanistic, and possibly a functional link may exist in the reciprocal imprinting of H19 and Igf2. The paternal H19 gene is apparently repressed by DNA methylation in the promoter region. This modification is not inherited from sperm but introduced after fertilisation. The nature of the primary germ line imprint therefore remains to be determined.  相似文献   

17.
Clinical,cytogenetical and molecular analyses of Angelman syndrome   总被引:1,自引:0,他引:1  
A total of 95 patients suspected with the clinical diagnosis of AS were evaluated and 37 cases (39%) were confirmed by cytogenetic or molecular studies as affected by Angelman syndrome. The clinical analysis was performed according to a specific clinical protocol for the diagnosis of AS. Cytogenetical analysis was used to detect chromosome rearrangements by determining the karyotype in lymphocytes by GTG banding and revealed an abnormal karyotype in two cases (5.4%), both of them presenting a new pericentromeric inversion in chromosome 15. Molecular analyses included determination of DNA methylation within the 15q11-13 region by Southern blotting and microsattelite analysis within the 15q11-13 region by PCR and the UBE3A gene was also studied by mutational screening. In 16 cases (43.2%) a de novo deletion was detected in the maternal chromosome 15:3 cases (8.1%) presented imprinting defect at the 15q11-13 region; one case is due to a paternal uniparental dissomy (2.7%) and another two cases showed a inherited mutation at the UBE3A gene (5.4%). Thirteen cases (35.1%) showed no deletion, no UPD, no imprinting defect, no UBE3A mutation and the diagnosis of AS could be ruled out in 58 patients. The objective of the present work was to describe the clinical and laboratory protocols employed at our laboratory in order to establish the AS study. We conclude that the protocols employed here were efficient for the diagnosis of AS, a frequently underdiagnosed pathology.  相似文献   

18.
The distal end of mouse chromosome 7 (Chr 7) contains a large cluster of imprinted genes. In this region two cis-acting imprinting centers, IC1 (H19 DMR) and IC2 (KvDMR1), define proximal and distal subdomains, respectively. To assess the functional independence of IC1 in the context of Chr 7, we developed a recombinase-mediated chromosome truncation strategy in embryonic stem cells and generated a terminal deletion allele, DelTel7, with a breakpoint in between the two subdomains. We obtained germ line transmission of the truncated Chr 7 and viable paternal heterozygotes, confirming the absence of developmentally required paternally expressed genes distal of Ins2. Conversely, maternal transmission of DelTel7 causes a midgestational lethality, consistent with loss of maternally expressed genes in the IC2 subdomain. Expression and DNA methylation analyses on DelTel7 heterozygotes demonstrate the independent imprinting of IC1 in absence of the entire IC2 subdomain. The evolutionarily conserved linkage between the subdomains is therefore not required for IC1 imprinting on Chr 7. Importantly, the developmental phenotype of maternal heterozygotes is rescued fully by a paternally inherited deletion of IC2. Thus, all the imprinted genes located in the region and required for normal development are silenced by an IC2-dependent mechanism on the paternal allele.  相似文献   

19.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) result from the disturbance of imprinted gene expression within human chromosome 15q11–q13. Some cases of PWS and AS are caused by microdeletions near the SNRPN gene that disrupt a regulatory element termed the imprinting center (IC). The IC has two functional components; an element at the promoter of SNRPN involved in PWS (PWS-IC) and an element 35 kilobases (kb) upstream of SNRPN involved in AS (AS-IC). To further understand the function of the IC, we sought to create a mouse model for AS-IC mutations. We have generated two deletions at a location analogous to that of the human AS-IC. Neither deletion produced an imprinting defect as indicated by DNA methylation and gene expression analyses. These results indicate that no elements critical for AS-IC function in mouse reside within the 12.8-kb deleted region and suggest that the specific location of the AS-IC is not conserved between human and mouse. Camilynn I. Brannan was Deceased  相似文献   

20.
Summary Sporadic cases of Prader-Willi syndrome (PWS) are associated with the physical absence of the paternal Prader-Willi chromosome region (PWCR) by deletion 15q11–13, by segmental maternal heterodisomy or by chromosome rearrangements resulting in homozygosity for maternal PWCR. In isolated/familial cases, it is proposed that the expression of PWS depends on the functional absence caused by mutated gene(s) within the paternal PWCR. The same mutation on a maternally derived chromosome 15 is not able to express PWS. An epigenetic mechanism associated with the paternal meiosis is essential. In the Angelman syndrome (AS), inverse mechanisms are postulated. There is convincing evidence for specific PWS and AS genes or alleles within PWCR. This is compatible with the observations of interstitial chromosome deletions of the critical region in normal individuals or in probands with phenotypes other than PWS or AS. The new ideas of the model stated here are: (1) the proposed epigenetic mechanism in PWCR is obviously common in humans, but is usually of no phenotypic relevance; (2) interactions with specific chromosomal or gene mutations are required for the clinical expression of PWS or AS; (3) each factor alone is not able to produce an abnormal phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号