首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Mei  C F Yocum 《Biochemistry》1991,30(31):7836-7842
Calcium is required for oxidation of water to molecular oxygen by photosystem II; the Ca2+ demand of the reaction increases upon removal of 23- and 17-kDa extrinsic polypeptides from detergent-derived preparations of the photosystem. Employing the manganese reductant NH2OH as a probe to examine the function of Ca2+ in photosystem II reveals that (1) Ca2+ slows the rate of NH2OH inhibition of O2 evolution activity, but only in photosystem II membranes depleted of extrinsic proteins, (2) other divalent cations (Sr2+, Cd2+) that compete for the Ca2+ site also slow NH2OH inhibition, (3) Ca2+ is noncompetitive with respect to NH2OH, (4) in order to slow inhibition, Ca2+ must be present prior to the initiation of NH2OH reduction of manganese, and (5) Ca2+ appears not to interfere with NH2OH reduction of manganese. We conclude that the ability of Ca2+ to slow the rate of NH2OH inhibition arises from the site in photosystem II where Ca2+ normally stimulates O2 evolution and that the mechanism of this phenomenon arises from the ability of Ca2+ or certain surrogate metals to stabilize the ligation environment of the manganese complex.  相似文献   

2.
Lee CI  Lakshmi KV  Brudvig GW 《Biochemistry》2007,46(11):3211-3223
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.  相似文献   

3.
The basic amino acids, L-arginine, L-lysine, LO-irnithine, and to a lesser extent L-histidine, strongly stimulate the O2 uptake of cell suspensions of the blue-green alga or cyanobacterium anacystis nidulans. In the case of L-histidine, the extra O2 consumption is associated with the formation in vivo of small amounts of HCN, particularly in an atmosphere of O2. The enzyme responsible for both the stimulated O2 uptake with the basic amino acids and the formation of HCN from histidine has been isolated and identified as an L-amino acid oxidase specific for the basic amino acids. The purification (15 000-fold) of this enzyme is described. The isolated enzyme is inhibited by o-phenanthroline, which has a similar inhibitory effect on the O2 uptake of cell suspensions with (and without) added amino acids. The basic amino acid oxidase, which is not inhibited by HCN, can be regarded as an 'alternate' oxidase in A. nidulans. An oxidase sensitive to HCN is apparently also operative. At high concentrations of lysine or arginine added HCN can almost double the initial rate of O2 consumption of cell suspensions. This can be attributed to the inhibition of catalase by HCN. At low concentrations of the amino acids, and with more prolonged incubation time, HCN becomes inhibitory. One interpretation could be that the HCN-sensitive terminal oxidase is also involved in the extra O2 uptake elicited by the basic amino acids, but other interpretations are possible. The extra O2 uptake elicited by histidine is almost completely inhibited by HCN, which is consistent with the finding that histidine is a relatively poor substrate for the basic amino acid oxidase.  相似文献   

4.
T A Ono  H Mino 《Biochemistry》1999,38(27):8778-8785
Binding of Mn2+ to manganese-depleted photosystem II and electron donation from the bound Mn2+ to an oxidized YZ tyrosine were studied under the same equilibrium conditions. Mn2+ associated with the depleted membranes in a nonsaturating manner when added alone, but only one Mn2+ ion per photosystem II (PS II) was bound to the membranes in the presence of other divalent cations including Ca2+ and Mg2+. Mn2+-dependent electron donation to photosystem II studied by monitoring the decay kinetics of chlorophyll fluorescence and the electron paramagnetic resonance (EPR) signal of an oxidized YZ tyrosine (YZ+) after a single-turnover flash indicated that the binding of only one Mn2+ ion to the manganese-depleted PS II is sufficient for the complete reduction of YZ+ induced by flash excitation. The results indicate that the manganese-depleted membranes have only one unique binding site, which has higher affinity and higher specificity for Mn2+ compared with Mg2+ and Ca2+, and that Mn2+ bound to this unique site can deliver an electron to YZ+ with high efficiency. The dissociation constant for Mn2+ of this site largely depended on pH, suggesting that a single amino acid residue with a pKa value around neutral pH is implicated in the binding of Mn2+. The results are discussed in relation to the photoactivation mechanism that forms the active manganese cluster.  相似文献   

5.
R Mei  C F Yocum 《Biochemistry》1992,31(36):8449-8454
Calcium binding to photosystem II slows NH2OH inhibition of O2 evolution; Mn2+ is retained by the O2-evolving complex [Mei, R., & Yocum, C. F. (1991) Biochemistry 30, 7836-7842]. This Ca(2+)-induced stability has been further characterized using the large reductant hydroquinone. Salt-washed photosystem II membranes reduced by hydroquinone in the presence of Ca2+ retain 80% of steady-state O2 evolution activity and contain about 2 Mn2+/reaction center that can be detected at room temperature by electron paramagnetic resonance. This Mn2+ produces a weak enhancement of H2O proton spin-lattice relaxation rates, cannot be easily extracted by a chelator, and is reincorporated into the O2-evolving complex upon illumination. A comparison of the properties of Ca(2+)-supplemented photosystem II samples reduced by hydroquinone or NH2OH alone or in sequence reveals the presence of a subpopulation of manganese atoms at the active site of H2O oxidation that is not accessible to facile hydroquinone reduction. At least one of these manganese atoms can be readily reduced by NH2OH following a noninhibitory hydroquinone reduction step. Under these conditions, about 3 Mn2+/reaction center are lost and O2 evolution activity is irreversibly inhibited. We interpret the existence of distinct sites of reductant action on manganese as further evidence that the Ca(2+)-binding site in photosystem II participates in regulation of the organization of manganese-binding ligands and the overall structure of the O2-evolving complex.  相似文献   

6.
Interactions of iodide ions with isolated photosystem 2 particles   总被引:1,自引:0,他引:1  
The effects of I- ions on O2 evolution by photosystem 2 particles, which were depleted of the 18-kDa and the 23-kDa extrinsic proteins of the O2 evolution complex by NaCl washing (dPS2 particles) were examined. In the absence of Cl- (incompetent dPS2) I- stimulated O2 evolution up to 3-6 mM, depending on the associated cation, and inhibited it at higher concentrations. In the presence of Cl- (competent dPS2), I- was inhibitory at all concentrations. The inhibition was reversible, it occurred at a site preceding Tyrz (Tyr residue mediating electron transfer from H2O to photosystem 2), and it interfered noncompetitively with the reactivation of incompetent dPS2 with Cl-. Furthermore, the organic salts tetrabutyl ammonium iodide and tetraphenyl phosphonium iodide proved to be stronger inhibitors than the inorganic NaI. This is interpreted as an indication of a negatively charged surface, situated behind a hydrophobic permeability barrier. Permeant organic cations, being better compensators of the inner surface charge than Na+, are also more apt in facilitating access of the I- ions to the inhibitory site in the vicinity of Tyrz.  相似文献   

7.
1. Phosphatidate phosphohydrolase from the particle-free supernatant of rat liver was assayed by using emulsions of phosphatidate as substrate. 2. The inhibition of the phosphohydrolase by chlorpromazine was of a competitive type with respect to phosphatidate. The potency of various amphiphilic cationic drugs as inhibitors of this reaction was related to their partition coefficients into a phosphatidate emulsion. 3. The effect of chlorpromazine on the phosphohydrolase activity was complementary rather than antagonistic towards Mg2+. Chlorpromazine stimulated the phosphohydrolase activity in the absence of added Mg2+ and was able to replace the requirement for Mg2+. However, at optimum concentrations of Mg2+, chlorpromazine inhibited the reaction, as did Ca2+. The phosphohydrolase activity was also stimulated by Co2+ and to a lesser extent by Mn2+, Fe2+, Fe3+, Ca2+, spermine and spermidine when Mg2+ was not added to the assays. 4. It is concluded that the inhibition of phosphatidate phosphohydrolase by amphiphilic cations can largely be explained by the interaction of these compounds with phosphatidate, which changes the physical properties of the lipid, making it less available for conversion into diacylglycerol. 5. The implications of these results to the effects of amphiphilic cations in redirecting glycerolipid synthesis at the level of phosphatidate are discussed.  相似文献   

8.
Ca2+ has been shown to be essential for the retention of maximal O2-evolving activity in Photosystem 2 particles extracted by using dodecyldimethylamine oxide from Anacystis nidulans thylakoids. The effect cannot entirely be mimicked by using Mg2+. Ca2+ stimulates electron transport from diphenylcarbazide to 2,6-dichloroindophenol catalysed by lead-inhibited cation-free preparations, showing the presence of two cation-binding sites in these particles. Photosystem 2 preparations extracted in Ca2+-containing buffer show the presence of three polypeptides at mol. wt. 30000, 33000 and 36000, which are absent or much decreased in preparations extracted in Mg2+-containing buffer. The calmodulin antagonist chlorpromazine inhibits activity of the Photosystem 2 preparation, suggesting the presence of a Ca2+-binding protein.  相似文献   

9.
The roles of Ca(2+) in H(2)O oxidation may be as a site of substrate binding, and as a structural component of the photosystem II O(2)-evolving complex. One indication of this dual role of the metal is revealed by probing the Mn cluster in the Ca(2+) depleted O(2) evolving complex that retains extrinsic 23- and 17-kDa polypeptides with reductants (NH(2)OH and hydroquinone) [Biochemistry 41 (2002) 958]. Calcium appears to bind to photosystem II at a site where it could bind substrate H(2)O. Equilibration of Ca(2+) with this binding site is facilitated by increased ionic strength, and incubation of Ca(2+) reconstitution mixtures at 22 degrees C accelerates equilibration of Ca(2+) with the site. The Ca(2+) reconstituted enzyme system regains properties of unperturbed photosystem II: Sensitivity to NH(2)OH inhibition is decreased, and Cl(-) binding with increased affinity can be detected. The ability of ionic strength and temperature to facilitate rebinding of Ca(2+) to the intact O(2) evolving complex suggests that the structural environment of the oxidizing side of photosystem II may be flexible, rather than rigid.  相似文献   

10.
A fifteen minute incubation of spinach chloroplasts with the divalent Ca2+ chelator, EGTA, in concentrations 50–250 μM, inhibits electron transport through both photosystems. All photosystem II partial reactions, including indophenol, ferricyanide and the DCMU-insensitive silicomolybdate reduction are inhibited from 70–100%. The photosystem II donor reaction, diphenyl carbazide → indophenol, is also inhibited, indicating that the inhibition site comes after the Mn2+ site, and that the first Ca2+ effect noted (site II) is not on the water oxidation enzyme, as is commonly assumed, but between the Mn2+ site and plastoquinone A pool. The other photosystem II effect of EGTA (Ca2+ site I), occurs in the region between plastoquinone A and P700 in the electron transport chain of chloroplasts. About 50% inhibition of the reaction ascorbate + TMPD → methyl viologen is given by incubation with 200 μM EGTA for 15 min. Ca2+ site II activity can be restored with 20 mM CaCl2. Ca2+ site I responds to Ca2+ and plastocyanin added jointly. More than 90% activity in the ascorbate + TMPD → methylviologen reaction can be restored. Various ways in which Ca2+ ions could affect chloroplast structure and function are discussed. Since EGTA is more likely to penetrate chloroplast membranes than EDTA, which is known to remove CF1, the coupling factor, from chloroplast membranes, and since Mg2+ ions are ineffective in restoring activity, it is concluded that Ca2+ may function in the electron transport chain of chloroplasts in a hitherto unsuspected manner.  相似文献   

11.
Phycobiliproteins obtained by dissociation of phycobilisomes were reassociated in vitro with intact thylakoids or isolated photosystems I and II preparations obtained from cyanophytes (prokaryotes) or green algae (eukaryotes) to form bound phycobilisome complexes. Energy transfer from Fremyella diplosiphon phycobiliproteins to chlorophyll a of reaction centers I and II was measured in: complexes containing intact thylakoids of the cyanophytes F. diplosiphon or Anacystis nidulans and the eukaryotic algae Euglena gracilis and mutants of Chlamydomonas reinhardtii; complexes containing isolated photosystem II particles of A. nidulans or C. reinhardtii; and complexes containing reaction center I of F. diplosiphon or C. reinhardtii. Energy transfer from phycoerythrin to chlorophyll a of photosystem II could be demonstrated in complexes containing phycobilisomes bound to cyanophyte thylakoids or isolated photosystem II particles of A. nidulans or C. reinhardtii. Bound phycobilisomes did not transfer energy to photosystem II within green algae thylakoids containing altered forms of light-harvesting chlorophyll a/b-protein complex (LHC) II antenna, reduced amounts of LHC II, or chlorophyll b, or chlorophyll b-less mutants, nor to chlorophyll a of photosystem I of intact thylakoids or isolated reaction centers. We conclude that phycobilisomes can form a specific and functional association with photosystem II particles of both cyanophytes and eukaryotic thylakoids. This interaction appears to be hindered by the presence of LHC II antenna in the eukaryotic thylakoids.  相似文献   

12.
Ca2+ and Cl- are obligatory cofactors in photosystem II (PS-II), the oxygen-evolving enzyme of plants. The sites of inhibition in both Ca(2+)- and Cl(-)-depleted PS-II were compared using EPR and flash absorption spectroscopies to follow the extent of the photooxidation of the redox-active tyrosine (TyrZ) and of the primary electron donor chlorophyll (P680) and their subsequent reduction in the dark. The inhibition occurred after formation of the S3 state in Ca(2+)-depleted PS-II. In Cl(-)-depleted photosystem II, the inhibition occurred after formation of the S3 state in about half of the centers and probably after S2TyrZ+ formation in the remaining centers. After the S3 state was formed in Ca(2+)- and Cl(-)-depleted photosystem II, electron transfer from TyrZ to P680 was inhibited. This inhibition is discussed in terms of electrostatic constraints resulting from S3 formation in the absence of Ca2+ and Cl-.  相似文献   

13.
We have found that copper(II) ions at about equimolar Cu2+/photosystem II (PS II) reaction center proportions stimulate oxygen evolution nearly twofold. This high affinity Cu-binding site is different from the binding sites of Mn and Ca ions. The analysis of the Cu2+ content in PS II preparations isolated from wild-type tobacco and a tobacco mutant deficient in light-harvesting complex suggests that Cu2+ may be a native component of PS II and may take part in the oxygen evolution process. At higher concentrations, Cu2+ ions inhibit oxygen evolution and quench fluorescence.  相似文献   

14.
Calcium is an essential cofactor in the oxygen-evolving complex (OEC) of photosystem II (PSII). The removal of Ca2+ or its substitution by any metal ion except Sr2+ inhibits oxygen evolution. We used steady-state enzyme kinetics to measure the rate of O2 evolution in PSII samples treated with an extensive series of mono-, di-, and trivalent metal ions in order to determine the basis for the affinity of metal ions for the Ca2+-binding site. Our results show that the Ca2+-binding site in PSII behaves very similarly to the Ca2+-binding sites in other proteins, and we discuss the implications this has for the structure of the site in PSII. Activity measurements as a function of time show that the binding site achieves equilibrium in 4 h for all of the PSII samples investigated. The binding affinities of the metal ions are modulated by the 17 and 23 kDa extrinsic polypeptides; their removal decreases the free energy of binding of the metal ions by 2.5 kcal/mol, but does not significantly change the time required to reach equilibrium. Monovalent ions are effectively excluded from the Ca2+-binding site, exhibiting no inhibition of O2 evolution. Di- and trivalent metal ions with ionic radii similar to that of Ca2+ (0.99 A) bind competitively with Ca2+ and have the highest binding affinity, while smaller metal ions bind more weakly and much larger ones do not bind competitively. This is consistent with a size-selective Ca2+-binding site that has a rigid array of coordinating ligands. Despite the large number of metal ions that competitively replace Ca2+ in the OEC, only Sr2+ is capable of partially restoring activity. Comparing the physical characteristics of the metal ions studied, we identify the pK(a) of the aqua ion as the factor that determines the functional competence of the metal ion. This suggests that Ca2+ is directly involved in the chemistry of water oxidation and is not only a structural cofactor in the OEC. We propose that the role of Ca2+ is to act as a Lewis acid, binding a substrate water molecule and tuning its reactivity.  相似文献   

15.
Heat inactivation of diphenylcarbazide (DPC)-supported 2,6-dichloroindophenol (DCIP) photoreduction by photosystem II (PS II) particles and non-oxygen-evolving PS II core complex isolated from spinach ( Spinacia oleracea L. cv. Kyoho) was suppressed under annealing conditions, and accelerated in the presence of EDTA or high concentration of divalent cations. After heating at 45°C for 10 min, half-maximal annealing effects occurred at 35°C. Minimum acceleration was observed in the presence of 1 m M Mg2+, implying the existence of a cation-specific site in the vicinity of the PS II reaction center. The acceleration depended on the temperature at which EDTA was added to PS II particles. Half-acceleration by EDTA occurred at 35°C. Glutaraldehyde stabilized PS II particles against heat inactivation of PS II photochemical reactions.  相似文献   

16.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

17.
Kinetic analysis reveals the mainly competitive inhibition of Na+-dependent Ca2+ efflux from mitochondria by cations of monovalent metals. Potency of the inhibitory effect of metals' cations on Na+-dependent Ca2+ efflux from mitochondria matrix increases in such an order (I50, mM): Cs+ (137.11) < Rb+ (122.63) < Li+ (24.59) < Tl+ (0.541). The results of correlation analysis show that sodium ions translocation by mitochondrial exchanger and its inhibition by the cations of monovalent metals is determined by their affinity for the oxygen-containing ligands and are accompanied with the ions dehydration. Inhibition of the mitochondrial Na+/Ca2+ exchanger by monovalent metal cations is also accompanied with the inhibition of cooperative interactions of metal ions with the ionbinding centers during transport cycle, which can be one of the mechanisms of the inhibition of ions translocation by this ion-transporting system.  相似文献   

18.
To examine the role of divalent cations in the generation of superoxide anion (O2-) by the NADPH oxidase system of phagocytic cells, membrane-rich fractions were prepared from human neutrophils and monocytes. O2- generation by the fractions in sucrose was enhanced by addition of Ca2+ or Mg2+. EDTA inhibited most of the O2- generation; Ca2+ or Mg2+ reversed the inhibition. Zn2+, Mn2+, or Cu2+ completely inhibited O2- production. Neutrophil membrane fraction solubilized with Triton X-100, then passed through a chelating column, lost 80% of its oxidase activity; the loss could be reversed by addition of Ca2+ or Mg2+. Addition of 0.3 mM Ca2+ or Mg2+ protected against thermal instability of the enzyme. Kinetic analysis of the neutrophil oxidase activity as a function of NADPH and Ca2+ or Mg2+ concentrations showed that cation did not interact with NADPH in solution or affect the binding of NADPH to the oxidase; rather, cation bound directly to the oxidase, or to some associated regulatory component, to activate the enzyme. For the neutrophil oxidase, the Km for NADPH was 51 +/- 6 (S.D.) microM. Hyperbolic saturation was observed with Ca2+ and Mg2+, and the Kd values were 1.9 +/- 0.3 and 2.9 +/- 0.3 microM, respectively, suggesting that the oxidase, or some associated component, has a relatively high-affinity binding site for Ca2+ and Mg2+.  相似文献   

19.
As in our previous report (Kamino, Uyesaka & Inouye, J. Membrane Biol. 17:13 1974), the absorbance changes of murexide caused by Ca2+ and followed up by a dual wavelength spectrophotometer were applied to measure synaptosomal Ca2+-binding in the presence of cations such as Rb+, Mn2+ or La3+. All the cations tested showed a significant inhibition of synaptosomal Ca2+-binding except Li+. The inhibitory effects could be divided into the following three categories: (1) noncompetive, co-operative K+-type, which includes alkali metal ions. The potency of inhibition is K+ greater than Rb+ greater than Cs+ greater than Li+, Na+ =0; (2) competitive Mn2+ -type which includes many divalent cations. The inhibitory potency was found to be in the following order: Mn2+ greater than Sr2+ greater than Cd2+, Ba2+ greater than Mg2+; (3) nonspecific, noncompetitive La3+ -type; among the cations tested, La3+ and Ce3+ were found to markedly reduce the Ca-binding capacity of synaptosomal particles, resulting in a noncompetitive inhibition, at least in the range of Ca2+ concentration used.  相似文献   

20.
Photosystem II particles have been prepared from spinach and Chlamydomonas reinhardii CW 15 thylakoids. Photosynthetic electron transport in these particles is inhibited by phenolic compounds like dinoseb, but not by atrazine and diuron. The labeling patterns obtained by photoaffinity labels derived from either atrazine (azido-atrazine) or the phenolic herbicide dinoseb (azido-dinoseb) were compared in photosystem II particles and thylakoids. Whereas azido-atrazine in thylakoids of spinach as well as of Chlamydomonas labels a 32-kilodalton peptide, this label does not react in photosystem II particle preparations. Azido-dinoseb, however, labels both the thylakoid membranes and the particles, predominantly polypeptides in the 40-53 kilodalton molecular weight region. Since the latter polypeptides are probably part of the reaction center of photosystem II, it is suggested that phenolic compounds have their inhibition site within the reaction center complex. This indicates that the atrazine-binding 32-kilodalton peptide is either absent or functionally inactive in photosystem II particles, whereas the phenol inhibitor-binding peptides are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号