首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of vascular ray differentiation has received limited attention, despite the fact that vascular rays constitute an important part of the secondary body of plants. In this paper we review developmental aspects of the ray system and suggest a general hypothesis for the regulation of ray differentiation and evolution. In studies of ray differentiation, two basic factors should be taken into consideration: 1) the normal gradual increase in ray size in relation to age, distance from the pith, and distance from the young leaves; and 2) the influence of wound effects on the size, structure, and spacing of rays. The relationships between the rate of cambial activity and secondary xylem differentiation are not clearly understood. There are contrasting results on the relationships between ray number and rate of radial growth. The rate of radial growth (= rate of cambial activity) is not the regulating mechanism of ray characteristics. Bünning (1952, 1965) proposed that rays are distributed regularly in the tissue, as the outcome of an inhibitory influence expressed by them. However, Bünning’s hypothesis contradicts a basic feature of the vascular ray system, namely, fusion of rays. Detailed histological studies of the secondary xylem revealed that proximity to and contact with rays plays a major role in the survival of fusiform initials in the cambium (Bannan, 1951, 1953). Such evidence led Ziegler (1964) to suggest that since the cambium is supplied predominantly via the rays, this is an effective feedback regulative system for an equidistant arrangement of the rays. The hypothesis that rays are induced and controlled by a radial signal flow seems to be the best explanation for the structure and spacing of rays. The formation of a polycentric ray—a special case of “ray” initiation inside a vascular ray—supports the idea that radial signal flow occurs within the rays (Lev-Yadun & Aloni, 1991a). This idea is also supported by findings fromQuercus species in which aggregate rays in the xylem disperse naturally in branch junctions and, following partial girdling, leave a longitudinal narrow bridge of cambium and bark as a result of enhanced axial signal flow (of auxin and other growth regulators) (Lev-Yadun & Aloni, 1991b). The longitudinally elongated shape of rays is their response to axial signal flows (mainly the polar auxin flow). Two methods have been used to study the evolution of the ray system: 1) statistical studies of the relationships between vessel and ray characteristics in many species, when vessel characteristics were the evolutionary standard, and 2) comparison of ray characteristics in fossils originating from several geological eras. We suggest that evolution of the ray system reflects changes in the relations between radial and axial signal flows.  相似文献   

2.
The presence of cranial retia mirabilia in rays of the genus Mobula is well established. Although previously regarded as consisting exclusively of arteries, the presence of veins has now been established in gross dissections of the rete in the mobulid, Manta birostris. Histological examination of the retia in Manta birostris and Mobula tarapacana confirms the presence of veins. These findings suggest the presence of a counter-current heat-exchanger that warms the brain.  相似文献   

3.
Batoids are a diverse clade of flat cartilaginous fishes that occur primarily in benthic marine habitats. The skates and rays typically use their flexible pectoral fins for feeding and propulsion via undulatory swimming. However, two groups of rays have adopted a pelagic or bentho‐pelagic lifestyle and utilize oscillatory swimming—the Myliobatidae and Gymnuridae. The myliobatids have evolved cephalic lobes, anteriorly extended appendages that are optimized for feeding, while their pectoral fins exhibit several modifications that likely arose in association with functional optimization of pelagic cruising via oscillatory flight. Here, we examine variation in fin ray distribution and ontogenetic timing of fin ray development in batoid pectoral fins in an evolutionary context using the following methods: radiography, computed tomography, dissections, and cleared and stained specimens. We propose an index for characterizing variation in the distribution of pectoral fin rays. While undulatory swimmers exhibit symmetry or slight anterior bias, we found a posterior shift in the distribution of fin rays that arose in two distinct lineages in association with oscillatory swimming. Undulatory and oscillatory swimmers occupy nonoverlapping morphospace with respect to fin ray distribution illustrating significant remodeling of pectoral fins in oscillatory swimmers. Further, we describe a derived skeletal feature in anterior pectoral fins of the Myliobatidae that is likely associated with optimization of oscillatory swimming. By examining the distribution of fin rays with clearly defined articulation points, we were able to infer evolutionary trends and body plan remodeling associated with invasion of the pelagic environment. Finally, we found that the number and distribution of fin rays is set early in development in the little skate, round stingray, and cownose ray, suggesting that fin ray counts from specimens after birth or hatching are representative of adults and therefore comparable among species.  相似文献   

4.
Declines of large sharks and subsequent release of elasmobranch mesopredators (smaller sharks and rays) may pose problems for marine fisheries management as some mesopredators consume exploitable shellfish species. The spotted eagle ray (Aetobatus narinari) is the most abundant inshore elasmobranch in subtropical Bermuda, but its predatory role remains unexamined despite suspected abundance increases and its hypothesized specialization for mollusks. We utilized a combination of acoustic telemetry, benthic invertebrate sampling, gut content analysis and manipulative experiments to assess the impact of spotted eagle rays on Bermudian shellfish resources. Residency and distribution of adult spotted eagle rays was monitored over two consecutive summers in Harrington Sound (HS), an enclosed inshore lagoon that has historically supported multiple recreational and commercial shellfish species. Telemetered rays exhibited variable fidelity (depending on sex) to HS, though generally selected regions that supported relatively high densities of potential mollusk prey. Gut content analysis from rays collected in HS revealed a diet of mainly bivalves and a few gastropods, with calico clam (Macrocallista maculata) representing the most important prey item. Manipulative field and mesocosm experiments with calico clams suggested that rays selected prey patches based on density, though there was no evidence of rays depleting clam patches to extirpation. Overall, spotted eagle rays had modest impacts on local shellfish populations at current population levels, suggesting a reduced role in transmitting cascading effects from apex predator loss. However, due to the strong degree of coupling between rays and multiple protected mollusks in HS, ecosystem-based management that accounts for ray predation should be adopted.  相似文献   

5.
Wood samples of 49 specimens representing 31 species and 11 genera of woody balsaminoids, i.e., Balsaminaceae, Marcgraviaceae, Pellicieraceae, and Tetrameristaceae, were investigated using light microscopy and scanning electron microscopy. The wood structure of Marcgraviaceae, Pellicieraceae, and Tetrameristaceae is characterized by radial vessel multiples with simple perforation plates, alternate vessel pitting, apotracheal and paratracheal parenchyma, septate libriform fibers, and the presence of raphides in ray cells. Tetrameristaceae and Pellicieraceae are found to be closely related based on the occurrence of unilaterally compound vessel-ray pitting and multiseriate rays with long uniseriate ends. The narrow rays in Pelliciera are characteristic of this genus, but a broader concept of Tetrameristaceae including Pelliciera is favored. Within Marcgraviaceae, wide rays (more than five-seriate) are typical of the genus Marcgravia. Furthermore, there is evidence that the impact of altitude and habit plays an important role in the wood structure of this family. The wood structure of Balsaminaceae cannot be compared systematically with other balsaminoids because of their secondary woodiness. Balsaminaceae wood strongly differs due to the presence of exclusively upright ray cells in Impatiens niamniamensis, the absence of rays in Impatiens arguta, and the occurrence of several additional paedomorphic features in both species.  相似文献   

6.
Fin rays of ray-finned fishes are composed of multiple bony segments, and each fin ray elongates by adding a new segment to the tip. Therefore, fin ray length is determined by the number of segments and the length of each segment. A comparison of the anal fin rays of a northern and southern wild population of the medaka, Oryzias latipes, revealed that southern fish had more segments per fin ray, resulting in longer anal fins than the northern fish. When fish were reared in a laboratory common environment, segmentation of the fin rays started earlier with respect to body size in the southern fish. In the southern males, moreover, the rate of segment addition accelerated after a certain body size, indicating sexual maturity. These patterns of segment addition during ontogeny were consistent with the patterns of fin ray elongation. Although distal segments tended to be longer, except for the most proximal segment, in both populations, the southern fish had shorter segments than the northern fish at any position on fin rays. These results indicate that the interpopulation variation in fin length is largely due to genetically-based differences in the control of segment addition, and that the length of each segment does not contribute to it. We suspect that fin ray segmentation is regulated by thyroid and sex hormones that differ between populations. We also found that some segments fuse with each other at the base of each fin ray, the functions and mechanisms of which remain unclear.  相似文献   

7.
Ray‐finned fishes actively control the shape and orientation of their fins to either generate or resist hydrodynamic forces. Because of the emergent mechanical properties of their segmented, bilaminar fin rays (lepidotrichia), and actuation by multiple muscles, fish can control the rigidity and curvature of individual rays independently, thereby varying the resultant forces across the fin surfaces. Expecting that differences in fin‐ray morphology should reflect variation in their mechanical properties, we measured several musculoskeletal features of individual spines and rays of the dorsal and anal fins of bluegill sunfish, Lepomis macrochirus, and assessed their mobility and flexibility. We separated the fin‐rays into four groups based on the fin (dorsal or anal) or fin‐ray type (spine or ray) and measured the length of the spines/rays and the mass of the three median fin‐ray muscles: the inclinators, erectors and depressors. Within the two ray groups, we measured the portion of the rays that were segmented vs. unsegmented and branched vs. unbranched. For the majority of variables tested, we found that variations between fin‐rays within each group were significantly related to position within the fin and these patterns were conserved between the dorsal and anal rays. Based on positional variations in fin‐ray and muscle parameters, we suggest that anterior and posterior regions of each fin perform different functions when interacting with the surrounding fluid. Specifically, we suggest that the stiffer anterior rays of the soft dorsal and anal fins maintain stability and keep the flow across the fins steady. The posterior rays, which are more flexible with a greater range of motion, fine‐tune their stiffness and orientation, directing the resultant flow to generate lateral and some thrust forces, thus acting as an accessory caudal fin. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Teleost fin ray bifurcations are characteristic of each ray in each fin of the fishes. Control of the positioning of such morphological markers is not well understood. We present evidence suggesting that the interray blastema is necessary for a proper bifurcation of each ray during regeneration in Danio rerio (Hamilton-Buchanan) (Cyprinidae, Teleostei). We performed single ray ablations, heterotopical graftings of ray fragments and small holes in lateral rays which do not normally bifurcate, to generate recombinants in which the lateral rays are surrounded with ectopic interrays originating from different positions within the tail fin. These ray-interray recombinants do now bifurcate. Furthermore, we show that the interray tissue and surrounding epidermis can modulate the length of the ray. These results stress the role of the interray in inducing bifurcations of the ray blastema as well as modulating ray morphogenesis in general. In addition, gene expression analysis under these experimental conditions suggests that msxA and msxD expression in the ray and interray epidermis is controlled by the ray blastema and that bmp4 could be a candidate signal involved in these inductions.  相似文献   

9.
Lints R  Jia L  Kim K  Li C  Emmons SW 《Developmental biology》2004,269(1):137-151
The fan and rays of the C. elegans male tail constitute a compound sensory organ essential for mating. Within this organ, the individual sensilla, known as rays, have unique identities. We show that ray identities are patterned by a selector gene mechanism in a manner similar to other serially homologous axial structures. One selector gene that promotes the identities of a subset of the rays is the Hox gene egl-5. Within EGL-5-expressing rays, further patterning is provided by a Pax-6 homolog and a signal of the TGFβ family. These genes and pathway coordinately specify multiple ray properties affecting all three terminal ray cell types. These properties include complex patterns of FMRFamide-like (FaRP) neuropeptides, serotonin (5HT) and dopamine expression, and ray morphology. Differences in these differentiated characteristics give each sensillum a unique identity and potentially endow the compound ray organ with a higher-order information gathering capacity.  相似文献   

10.
Ray‐finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray‐finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm?1 in the proximal, unsegmented portion of the fin ray and 0.065 mm?1 in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms?1 (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm?1. Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10?6 Nm2. In computational fluid dynamic simulations of the fin‐vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small‐amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray‐finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid perturbations encountered by swimming fish. J. Morphol. 274:1044–1059, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The Trichostrongylina parasitic in the leaf-eared mouse Phyllotis sp. (Sigmodontinae) from the Province of Catamarca, Argentina are studied. Three new species of Stilestrongylus Freitas, Lent and Almeida, 1937 (Heligmosomoidea: Heligmonellidae: Nippostrongylinae) are described. Stilestrongylus andalgala n. sp. is distinguished from the most closely related species S. moreli Diaw, 1976 parasitic in Auliscomys boliviensis from Bolivia, by the absence of a common trunk of right rays 2 and 3, by left ray 4 shorter than ray 5, and by the shape of the female tail, without a mucron. Stilestrongylus catamarca n. sp. is distinguished from all the other species in the genus by hypertrophied rays 2, larger than rays 3, and from the closely related species Stilestrongylus barusi Durette-Desset, 1971, parasitic in Sigmodontomys alfari from Colombia, by right ray 4 longer than ray 5 and left ray 4 shorter than ray 5, by a larger spicule length/body length ratio (22.6% vs. 7.2%), and by the presence of a mucron on the female tail. Stilestrongylus gracielae n. sp. most closely resembles Stilestrongylus azarai Durette-Desset and Sutton, 1985, parasitic in Akodon azarae and in Graomys griseoflavus, and Stilestrongylus franciscanus Digiani and Durette-Desset, 2003, also parasitic in G. griseoflavus, both from Argentina. These latter differ from the new species by the right lobe of the caudal bursa: in S. azarai rays 4, 5 and 6 arise at same level from their common trunk and in S. franciscanus right rays 4 and 5 diverge at their distal extremity. Lamanema chavezi Becklund, 1963 (Molineoidea: Molineinae), a parasite of South American camelids, is reported in rodents for the second time.  相似文献   

12.
Two new species of Nippostrongylinae, Hassalstrongylus puntanus n. sp., and Stilestrongylus franciscanus n. sp. are described from the intestine of the grey leaf-eared mouse Graomys griseoflavus (Waterhouse, 1837) (Sigmodontinae) from the Province of San Luis, Argentina. Hassalstrongylus puntanus n. sp. is distinguished from the most closely related species H. dollfusi (Díaz-Ungría, 1963), a parasite of Mus musculus from Venezuela by longer rays 2, shorter rays 4, proximal half of the dorsal ray non-enlarged and a non-retractile female tail. Stilestrongylus franciscanus n. sp. is distinguished from the most closely related species S. flavescens Sutton & Durette-Desset, 1991, a parasite of Oryzomys flavescens from Argentina, by rays 2 and 3 diverging separately from common trunk of rays 2 to 6, and by right ray 3 arising from this trunk more distally than ray 6. Stilestrongylus azarai Durette-Desset & Sutton, 1985, a parasite of Akodon azarae from Buenos Aires, Argentina, was also found parasitizing G. griseoflavus, representing new host and locality records. Some additional morphological data for this species are also provided.  相似文献   

13.
The study of trophic ecology of marine predators is crucial to better understand the ecological factors that condition their role within marine ecosystems. Here we investigated the trophic habits and position of a Mediterranean endemic predator, the starry ray, Raja asterias. Specifically, we quantified the diet composition of this endemic ray in a highly exploited area of the NW Mediterranean, and we evaluated the effects of sex, maturity-stage and season on its feeding habits. Our results revealed that the starry ray is a predator of crustaceans (crabs and shrimps), and to a lower extent on teleosts, molluscs and polychaetes. This species has a high trophic position within its food web and feeds mainly on crabs (mainly Liocarcinus depurator and Goneplax rhomboides), independent of their sex, maturity-stage or season. The great importance of crabs in the diet of starry ray may be due to the fact that crabs are the dominant crustaceans in terms of biomass and abundance in the area where starry rays were collected, thus allowing them to exploit the most abundant food resource. Since the starry ray has shown a progressive decline on the catch, further research is needed to analyse the main drivers of starry ray dynamics in the Western Mediterranean Sea. Our results present important new data that will allow us to further explore the population dynamics of starry rays and the role of crustacean availability and fishing activity.  相似文献   

14.
Cownose rays are implicated in the consumption of commercially important shellfish on the U.S. East Coast. We tested this assumption by developing a molecular technique for species identification from cownose ray gut contents. Digestive tracts sampled from 33 rays in Pamlico Sound, NC and Chesapeake Bay, VA contained pieces of partially-digested tissue, well-digested tissue, fluid, and minute shell fragments which made visual identification to the species level nearly impossible. We sequenced the cytochrome oxidase subunit I (COI) for seven locally acquired bivalve species, chosen for their commercial and ecological importance in NC and VA. Sequences were used to design species-specific primers for each bivalve species to amplify polymerase chain reaction (PCR) products. We designed primers such that PCR products were sufficiently different in size to be distinguishable from one another when resolved on an agarose gel, and multiplexing of several species in one reaction was possible. Digestive tract sample testing revealed that cownose rays in Chesapeake Bay ate stout tagelus and soft shell clams. There was no evidence of the rays in the study consuming commercially important oysters, hard clams, and bay scallops. Further sampling over an extended period of time and additional locations is required to confirm these results. Our diagnostic tests could easily be expanded to elucidate the impact of cownose ray predation on prey populations.  相似文献   

15.
史刚荣  王旭明  张铮   《广西植物》2007,27(2):161-166
对安徽黄山海拔420~1840m的华中五味子茎的次生木质部进行了生态解剖学研究。结果表明,茎的次生木质部为散孔材,导管分子长741.7~1025.2μm,直径为152.4~191.9μm;导管频率60.6~70.2mm-2。纤维管胞长925.2~1046.3μm;木射线类型为异形ⅡA和ⅡB,单列射线高682.1~778.4μm,多列射线高度为1093~1208μm,多列射线宽63.6~92.6μm,射线频率9.2~12.8mm-1。次生木质部解剖特征随异质生境而表现出一定的可塑性,其中,多列射线宽、射线频率、导管分子长度、导管直径等性状的可塑性较大。多重回归分析表明,水分和温度是影响华中五味子次生木质部解剖特征的主导因子。随着空气相对湿度的增加,导管分子长度和直径均增大,射线频率减小。随着降雨量的增加,纤维长度增加。随着最冷月温度的增加,导管频率增加,多列射线宽度减小。随着年较差的增加,单列射线和多列射线高度均减小。  相似文献   

16.
The skeleton of the "wings" of skates and rays consists of a series of radially oriented cartilaginous fin rays emanating from a modified pectoral girdle. Each fin ray consists of small, laterally oriented skeletal elements, radials, traditionally represented as simple cylindrical building blocks. High-resolution radiography reveals the pattern of calcification in batoid wing elements, and their organization within the fin ray, to be considerably more complex and phylogenetically variable than previously thought. Calcification patterns of radials varied between families, as well as within individual pectoral fins. Oscillatory swimmers show structural interconnections between fin rays in central areas of the wing. Morphological variation was strongly predictive of locomotor strategy, which we attribute to oscillatory swimmers needing different areas of the wing stiffened than do undulatory swimmers. Contributions of various forms of calcification to radial stiffness were calculated theoretically. Results indicate that radials completely covered by mineralized tissue ("crustal calcification") were stiffer than those that were calcified in chain-like patterns ("catenated calcification"). Mapping this functionally important variation onto a phylogeny reveals a more complicated pattern than the literature suggests for the evolution of locomotor mode. Therefore, further investigation into the phylogenetic distribution of swimming mode is warranted.  相似文献   

17.
We have investigated the mechanism that patterns dopamine expression among Caenorhabditis elegans male ray sensory neurons. Dopamine is expressed by the A-type sensory neurons in three out of the nine pairs of rays. We used expression of a tyrosine hydroxylase reporter transgene as well as direct assays for dopamine to study the genetic requirements for adoption of the dopaminergic cell fate. In loss-of-function mutants affecting a TGFbeta family signaling pathway, the DBL-1 pathway, dopaminergic identity is adopted irregularly by a wider subset of the rays. Ectopic expression of the pathway ligand, DBL-1, from a heat-shock-driven transgene results in adoption of dopaminergic identity by rays 3-9; rays 1 and 2 are refractory. The rays are therefore prepatterned with respect to their competence to be induced by a DBL-1 pathway signal. Temperature-shift experiments with a temperature-sensitive type II receptor mutant, as well as heat-shock induction experiments, show that the DBL-1 pathway acts during an interval that extends from two to one cell generation before ray neurons are born and begin to differentiate. In a mutant of the AbdominalB class Hox gene egl-5, rays that normally express EGL-5 do not adopt dopaminergic fate and cannot be induced to express DA when DBL-1 is provided by a heat-shock-driven dbl-1 transgene. Therefore, egl-5 is required for making a subset of rays capable of adopting dopaminergic identity, while the function of the DBL-1 pathway signal is to pattern the realization of this capability.  相似文献   

18.
A study of the shapes of secondary sagittal tri- and quadri-radiate spicules of the calcareous sponge Leuconia fistulosa has revealed that the paired rays appear kinked, with straight sections in between the kinks, when the spicules are viewed along the optic axis of the constituent calcite. The secondary sagittal spicules thus conform with monaxons and with per-regular and primary sagittal tri- and quadri-radiates, in general, in that whenever a ray is curved, the curvature is always in a single plane that includes the optic axis. The kinks are not necessarily distributed in symmetrical fashion along the paired rays. A mechanism is proposed whereby uniplanar curvature could be achieved.  相似文献   

19.
The explicit incorporation of movement in the modelling of population dynamics can allow improved management of highly mobile species. Large-scale movements are increasingly being reported for sharks and rays. Hence, in this review we summarise the current understanding of long-scale movement patterns of sharks and rays and then present the different methods used in fisheries science for modelling population movement with an emphasis on sharks and rays. The use of movement data for informing population modelling and deriving management advice remains rare for sharks and rays. In the few cases where population movement was modelled explicitly, movement information has been solely derived from conventional tagging. Though shark and ray movement has been increasingly studied through a range of approaches these different sources of information have not been used in population models. Integrating these multiple sources of movement information could advance our understanding of shark and ray dynamics. This, in turn, would allow the use of more adequate models for assessing stocks and advising management and conservation effort.  相似文献   

20.
Remodeling of the extracellular matrix (ECM) is pivotal for various biological processes, including organ morphology and development. The Caenorhabditis elegans male tail has male-specific copulatory organs, the rays and the fan. Ray morphogenesis, which involves a rapid remodeling of the ECM, is an important model of morphogenesis, although its mechanism is poorly understood. ADAMTS (a disintegrin-like and metalloproteinase with thrombospondin type I motifs) is a novel metalloproteinase family that is thought to be an important regulator for ECM remodeling during development and pathological states. We report here that a new C. elegans ADAMTS family gene, adt-1, plays an important regulatory role in ray morphogenesis. Inactivation of the adt-1 gene resulted in morphological changes in the rays as well as the appearance of abnormal protuberances around the rays. In addition, mating ability was remarkably impaired in adt-1 deletion mutant males. Furthermore, we found that the green fluorescent protein reporter driven by the adt-1 promoter was specifically expressed throughout the rays in the male tail. We hypothesize that ADT-1 controls the ray extension process via remodeling of the ECM in the cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号