共查询到20条相似文献,搜索用时 0 毫秒
1.
Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene 总被引:9,自引:0,他引:9
下载免费PDF全文

Frosk P Weiler T Nylen E Sudha T Greenberg CR Morgan K Fujiwara TM Wrogemann K 《American journal of human genetics》2002,70(3):663-672
Limb-girdle muscular dystrophy type 2H (LGMD2H) is a mild autosomal recessive myopathy that was first described in the Manitoba Hutterite population. Previous studies in our laboratory mapped the causative gene for this disease to a 6.5-Mb region in chromosomal region 9q31-33, flanked by D9S302 and D9S1850. We have now used additional families and a panel of 26 microsatellite markers to construct haplotypes. Twelve recombination events that reduced the size of the candidate region to 560 kb were identified or inferred. This region is flanked by D9S1126 and D9S737 and contains at least four genes. Exons of these genes were sequenced in one affected individual, and four sequence variations were identified. The families included in our study and 100 control individuals were tested for these variations. On the basis of our results, the mutation in the tripartite-motif-containing gene (TRIM32) that replaces aspartate with asparagine at position 487 appears to be the causative mutation of LGMD2H. All affected individuals were found to be homozygous for D487N, and this mutation was not found in any of the controls. This mutation occurs in an NHL (named after the proteins NCL1, HT2A, and LIN-41) domain at a position that is highly conserved. NHL domains are known to be involved in protein-protein interactions. Although the function of TRIM32 is unknown, current knowledge of the domain structure of this protein suggests that it may be an E3-ubiquitin ligase. If proven, this represents a new pathogenic mechanism leading to muscular dystrophy. 相似文献
2.
Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11-21. 总被引:5,自引:1,他引:5
下载免费PDF全文

A J van der Kooi M van Meegen T M Ledderhof E M McNally M de Visser P A Bolhuis 《American journal of human genetics》1997,60(4):891-895
Limb-girdle muscular dystrophy (LGMD) constitutes a clinically and genetically heterogeneous group of myogenic disorders with a limb-girdle distribution of weakness. One autosomal dominant family, LGMD1A, has been linked to chromosome 5q, whereas in other autosomal dominant families linkage to this chromosome has been excluded. We studied 58 members of three families with a newly recognized autosomal dominantly inherited LGMD with cardiac involvement. A search with highly polymorphic microsatellite markers was carried out. The gene for this newly recognized dominant form of LGMD was located on chromosome 1q11-21, with a combined maximum two-point LOD score >12 at theta = 0. 相似文献
3.
H Haravuori P Mkel-Bengs B Udd J Partanen L Pulkkinen H Somer L Peltonen 《American journal of human genetics》1998,62(3):620-626
Tibial muscular dystrophy (TMD) is a rare autosomal dominant distal myopathy with late adult onset. The phenotype is relatively mild: muscle weakness manifests in the patient's early 40s and remains confined to the tibial anterior muscles. Histopathological changes in muscle are compatible with muscular dystrophy, with the exception that rimmed vacuoles are a rather common finding. We performed a genomewide scan, with 279 highly polymorphic Cooperative Human Linkage Center microsatellite markers, on 11 affected individuals of one Finnish TMD family. The only evidence for linkage emerged from markers in a 43-cM region on chromosome 2q. In further linkage analyses, which included three other Finnish TMD families and which used a denser set of markers, a maximum two-point LOD score of 10.14 (recombination fraction of .05) was obtained with marker D2S364. Multipoint likelihood calculations, combined with the haplotype and recombination analyses, restricted the TMD locus to an approximately 1-cM critical chromosomal region without any evidence of heterogeneity. Since all the affecteds share one core haplotype, the dominance of one ancestor mutation is obvious in the Finnish TMD families. The disease locus that was found represents a novel muscular dystrophy locus, providing evidence for the involvement of one additional gene in the distal myopathy group of muscle disorders. 相似文献
4.
S J DeMichele R G Brown 《Comparative biochemistry and physiology. B, Comparative biochemistry》1984,79(2):203-209
There were marked differences between the levels of collagen (measured as hydroxyproline) and mucopolysaccharides (measured as hexosamine) found in embryonic chicks with genetic muscular dystrophy and their normal controls. The chief differences were that the dystrophic tissues (gastrocnemius muscle and tendon, pectoralis major and skin) had: (a) greater amounts of hexosamine early in embryonic development; (b) hydroxyproline levels that rose at a faster rate, yielding different slopes than their normal controls; (c) relatively greater amounts of hydroxyproline than hexosamine later in embryonic life (day 20). Connective tissue systems in muscles were preferentially affected. The connective tissue system associated with dystrophic tissues appeared to lag behind the normal rhythm pattern of embryological development. The changes in connective tissue metabolism observed in dystrophic chicks suggested that the collagen from dystrophic embryonic chicks may be of a different structure or composition than that found in the normals. 相似文献
5.
6.
Manitoba aboriginal kindred with original cerebro-oculo- facio-skeletal syndrome has a mutation in the Cockayne syndrome group B (CSB) gene
下载免费PDF全文

Meira LB Graham JM Greenberg CR Busch DB Doughty AT Ziffer DW Coleman DM Savre-Train I Friedberg EC 《American journal of human genetics》2000,66(4):1221-1228
Cerebro-oculo-facio-skeletal (COFS) syndrome is a rapidly progressive neurological disorder leading to brain atrophy with calcification, cataracts, microcornea, optic atrophy, progressive joint contractures, and growth failure. Cockayne syndrome (CS) is a recessively inherited neurodegenerative disorder characterized by low-to-normal birth weight; growth failure; brain dysmyelination with calcium deposits; cutaneous photosensitivity; pigmentary retinopathy, cataracts, or both; and sensorineural hearing loss. CS cells are hypersensitive to UV radiation because of impaired nucleotide excision repair of UV radiation-induced damage in actively transcribed DNA. The abnormalities in CS are associated with mutations in the CSA or CSB genes. In this report, we present evidence that two probands related to the Manitoba Aboriginal population group within which COFS syndrome was originally reported have cellular phenotypes indistinguishable from those in CS cells. The identical mutation was detected in the CSB gene from both children with COFS syndrome and in both parents of one of the patients. This mutation was also detected in three other patients with COFS syndrome from the Manitoba Aboriginal population group. These results suggest that CS and COFS syndrome share a common pathogenesis. 相似文献
7.
Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect
下载免费PDF全文

Bachinski LL Udd B Meola G Sansone V Bassez G Eymard B Thornton CA Moxley RT Harper PS Rogers MT Jurkat-Rott K Lehmann-Horn F Wieser T Gamez J Navarro C Bottani A Kohler A Shriver MD Sallinen R Wessman M Zhang S Wright FA Krahe R 《American journal of human genetics》2003,73(4):835-848
Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, is a clinically and genetically heterogeneous neuromuscular disorder. DM is characterized by autosomal dominant inheritance, muscular dystrophy, myotonia, and multisystem involvement. Type 1 DM (DM1) is caused by a (CTG)(n) expansion in the 3' untranslated region of DMPK in 19q13.3. Multiple families, predominantly of German descent and with clinically variable presentation that included proximal myotonic myopathy (PROMM) and type 2 DM (DM2) but without the DM1 mutation, showed linkage to the 3q21 region and were recently shown to segregate a (CCTG)(n) expansion mutation in intron 1 of ZNF9. Here, we present linkage to 3q21 and mutational confirmation in 17 kindreds of European origin with PROMM and proximal myotonic dystrophy, from geographically distinct populations. All patients have the DM2 (CCTG)(n) expansion. To study the evolution of this mutation, we constructed a comprehensive physical map of the DM2 region around ZNF9. High-resolution haplotype analysis of disease chromosomes with five microsatellite and 22 single-nucleotide polymorphism markers around the DM2 mutation identified extensive linkage disequilibrium and a single shared haplotype of at least 132 kb among patients from the different populations. With the exception of the (CCTG)(n) expansion, the available markers indicate that the DM2 haplotype is identical to the most common haplotype in normal individuals. This situation is reminiscent of that seen in DM1. Taken together, these data suggest a single founding mutation in DM2 patients of European origin. We estimate the age of the founding haplotype and of the DM2 (CCTG) expansion mutation to be approximately 200-540 generations. 相似文献
8.
Familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2B map to the same region of chromosome 10 as multiple endocrine neoplasia type 2A. 总被引:10,自引:0,他引:10
T C Lairmore J R Howe J A Korte W G Dilley L Aine E Aine S A Wells H Donis-Keller 《Genomics》1991,9(1):181-192
Medullary thyroid carcinoma (MTC) occurs as a component of three well-described autosomal dominant familial cancer syndromes. Multiple endocrine neoplasia type 2A (MEN 2A) is characterized by MTC, pheochromocytomas, and parathyroid hyperplasia. Patients with the rarer multiple endocrine neoplasia type 2B (MEN 2B) syndrome develop MTC and pheochromocytomas, as well as mucosal neuromas, ganglioneuromatosis of the gastrointestinal tract, and a characteristic "marfanoid" habitus. Finally, MTC is transmitted in an autosomal dominant pattern in some families without associated pheochromocytomas or parathyroid hyperplasia (familial medullary thyroid carcinoma, MTC1(2). Sixty-one members of two well-characterized kindreds segregating MTC1 and 34 [corrected] members of six families segregating MEN2B were genotyped using a panel of RFLP probes from the pericentromeric region of chromosome 10 near a locus for MEN 2A. Statistically significant linkage was observed between the chromosome 10 centromere-specific marker D10Z1 and MTC1 (maximum pairwise lod score 5.88 with 0% recombination) and D10Z1 and MEN2B (maximum pairwise lod score 3.58 with 0% recombination). A maximum multipoint lod score of 4.08 was obtained for MEN2B at the position of D10Z1. In addition, 92 members of a previously unreported large MEN2A kindred were genotyped, and linkage to the pericentromeric region of chromosome 10 is reported (maximum pairwise lod score of 11.33 with 0% recombination between MEN2A and RBP3). These results demonstrate that both a locus for familial MTC and a locus for MEN 2B map to the pericentromeric region of chromosome 10, in the same region as a locus for MEN 2A. The finding that each of these three clinically distinct familial cancer syndromes maps to the same chromosomal region suggests that all are allelic mutations at the same locus or represent a cluster of genes involved in the regulation of neuroendocrine tissue development. 相似文献
9.
Horrigan SK Bartoloni L Speer MC Fulton N Kravarusic J Ramesar R Vance JM Yamaoka LH Westbrook CA 《Genomics》1999,57(1):24-35
10.
11.
Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus.
下载免费PDF全文

L J Ptacek J S Trimmer W S Agnew J W Roberts J H Petajan M Leppert 《American journal of human genetics》1991,49(4):851-854
Paramyotonia congenita (PC), an autosomal dominant muscle disease, shares some clinical and electrophysiological similarities with another myotonic muscle disorder, hyperkalemic periodic paralysis (HYPP). However, clinical and electrophysiologic differences allow differentiation of the two disorders. The HYPP locus was recently shown to be linked to a skeletal muscle sodium-channel gene probe. We now report that PC maps to the same locus (LOD score 4.4, theta = 0 at assumed penetrance of .95). These linkage results, coupled with physiological data demonstrating abnormal sodium-channel function in patients with PC, implicate a sodium-channel gene as an important candidate for the site of mutation responsible for PC. Furthermore, this is strong evidence for the hypothesis that PC and HYPP are allelic disorders. 相似文献
12.
Agnieszka Madej-Pilarczyk Adam Niezgoda Magdalena Janus Romuald Wojnicz Michał Marchel Anna Fidziańska Stefan Grajek Irena Hausmanowa-Petrusewicz 《Journal of applied genetics》2017,58(1):87-91
Laminopathies, a group of heterogeneous disorders associated with lamin A/C gene (LMNA) mutations, encompass a wide spectrum of clinical phenotypes, which may present as separate disease or as overlapping syndromes. We describe a 35-year-old female in whom a novel sporadic heterozygous mutation c.1001_1003delGCC (p.Ser334del) of the LMNA gene was found. The patient presented with overlapping syndrome of heart failure secondary to dilated cardiomyopathy, limb-girdle dystrophy and partial lipodystrophy. Endomyocardial biopsy revealed strong up-regulation of HLA classes I and II antigens on microvessels and induction of the class I antigens on cardiomyocytes. On muscle biopsy, a wide range of fiber sizes and small clusters of inflammatory infiltrations were found. In the rapid progression of heart failure with arrhythmias or conduction defect, accompanied with muscle atrophy and lipodystrophy, the genetic disease should be taken into consideration. In addition, undefined inflammatory response and fibrosis in the heart or skeletal muscle might further justify screening of the lamin A/C gene. 相似文献
13.
Turner's syndrome and Duchenne muscular dystrophy in a girl with an X; autosome translocation 总被引:9,自引:0,他引:9
A balanced de novo (X;9) translocation was observed in a patient with progressive muscular dystrophy of Duchenne's type (DMD), Turner's syndrome, epilepsy and mental retardation. The involvement of the paternal X is suggested. The assignment of the gene locus for DMD is confirmed on Xp21. 相似文献
14.
Sequence analysis of the breakpoint regions of an X;5 translocation in a female with Duchenne muscular dystrophy. 总被引:5,自引:0,他引:5
下载免费PDF全文

X;autosome translocations in females with Duchenne muscular dystrophy (DMD) provide an opportunity to study the mechanisms responsible for chromosomal rearrangements that occur in the germ line. We describe here a detailed molecular analysis of the translocation breakpoints of an X;autosome reciprocal translocation, t(X;5)(p21;q31.1), in a female with DMD. Cosmid clones that contained the X-chromosome breakpoint region were identified, and subclones that hybridized to the translocation junction fragment in restriction digests of the patient's DNA were isolated and sequenced. Primers designed from the X-chromosomal sequence were used to obtain the junction fragments on the der(X) and the der(5) by inverse PCR. The resultant clones were also cloned and sequenced, and this information used to isolate the chromosome 5 breakpoint region. Comparison of the DNA sequences of the junction fragments with those of the breakpoint regions on chromosomes X and 5 revealed that the translocation arose by nonhomologous recombination with an imprecise reciprocal exchange. Four and six base pairs of unknown origin are inserted at the exchange points of the der(X) and der(5), respectively, and three nucleotides are deleted from the X-chromosome sequence. Two features were found that may have played a role in the generation of the translocation. These were (1) a repeat motif with an internal homopyrimidine stretch 10 bp upstream from the X-chromosome breakpoint and (2) a 9-bp sequence of 78% homology located near the breakpoints on chromosomes 5 and X. 相似文献
15.
Fukuyama-type congenital muscular dystrophy (FCMD, MIM#253800) is an autosomal recessive disorder characterized by severe muscular dystrophy associated with brain malformations. FCMD is the second most common form of muscular dystrophy after Duchenne muscular dystrophy and one of the most common autosomal recessive diseases among the Japanese population, and yet few patients outside of Japan had been reported with this disorder. We report the first known Egyptian patient with FCMD, established by clinical features of generalized weakness, pseudohypertrophy of calf muscles, progressive joint contractures, severe scoliosis, elevated serum creatine kinase level, myopathic electrodiagnostic changes, brain MRI with cobblestone complex, and mutation in the fukutin gene. In addition, our patient displayed primary microcephaly, not previously reported associated with fukutin mutations. Our results expand the geographic and clinical spectrum of fukutin mutations. 相似文献
16.
Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy. 总被引:6,自引:0,他引:6
F Quan J Janas S Toth-Fejel D B Johnson J K Wolford B W Popovich 《American journal of human genetics》1997,60(1):160-165
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome. 相似文献
17.
D N Messina M C Speer M A Pericak-Vance E M McNally 《American journal of human genetics》1997,61(4):909-917
Inherited cardiomyopathies may arise from mutations in genes that are normally expressed in both heart and skeletal muscle and therefore may be accompanied by skeletal muscle weakness. Phenotypically, patients with familial dilated cardiomyopathy (FDC) show enlargement of all four chambers of the heart and develop symptoms of congestive heart failure. Inherited cardiomyopathies may also be accompanied by cardiac conduction-system defects that affect the atrioventricular node, resulting in bradycardia. Several different chromosomal regions have been linked with the development of autosomal dominant FDC, but the gene defects in these disorders remain unknown. We now characterize an autosomal dominant disorder involving dilated cardiomyopathy, cardiac conduction-system disease, and adult-onset limb-girdle muscular dystrophy (FDC, conduction disease, and myopathy [FDC-CDM]). Genetic linkage was used to exclude regions of the genome known to be linked to dilated cardiomyopathy and muscular dystrophy phenotypes and to confirm genetic heterogeneity of these disorders. A genomewide scan identified a region on the long arm of chromosome 6 that is significantly associated with the presence of myopathy (D6S262; maximum LOD score [Z(max)] 4.99 at maximum recombination fraction [theta(max)] .00), identifying FDC-CDM as a genetically distinct disease. Haplotype analysis refined the interval containing the genetic defect, to a 3-cM interval between D6S1705 and D6S1656. This haplotype analysis excludes a number of striated muscle-expressed genes present in this region, including laminin alpha2, laminin alpha4, triadin, and phospholamban. 相似文献
18.
Measurement of serum creatine phosphokinase (CPK) is the most commonly applied test for carrier detection in Duchenne muscular dystrophy. About two thirds of all carriers have markedly elevated CPK levels. Age correction of CPK measurements would be straightforward if carriers of all ages could be unambiguously identified. Since such identification is impossible, we elaborate an indirect statistical method which is based on Haldane's theory of the balance between selection and mutation for X-linked lethals. We also apply this method to a large body of data gathered on female relatives of Duchenne muscular dystrophy patients and on controls. The results are compared with earlier partial findings. 相似文献
19.