首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stomatal opening on Vicia faba can be induced by high CO2 partial pressures (10.2%) in dark as well as in light. Stomatal aperture was measured in both cases with a hydrogen porometer. The distribution of 14C among early products of photosynthesis was studied. Comparisons are made with carboxylations occurring when stomata were open in the dark with CO2-free air and in light with 0.034% CO2. Results showed that in high CO2 partial pressure in light, less radioactivity was incorporated in Calvin cycle intermediates and more in sucrose. carboxylations and photorespiration seemed to be inhibited. In the dark in both CO2 conditions, 14C incorporation was found in malate and aspartate but also in serine and glycerate in high CO2 conditions. In light these changes in metabolic pathways may be related with the deleterious effects recorded on leaves after long-term expositions to high partial pressure of CO2.Abbreviations DHAP dihydroxyacetone phosphate - PEP phosphonenolpyruvate - PEPCK phosphonenolpyruvatecarboxykinase - PGA 3-phosphoglyceric acid - RUBPc ribulose 1,5-bisphosphate carboxylase  相似文献   

2.
Manfred Kluge 《Planta》1969,88(2):113-129
Summary Detached phyllodia ofBryophyllum tubiflorum were fed under illumination with14CO2 at different times during the light/dark period (12:12 hours). After photosynthesis in presence of14CO2 during the intrinsic dark period the greatest part of soluble radioactivity was found in malate. When the same experiment was repeated during the light period, radioactivity was incorporated mainly into sucrose in the first hours while malate was labelled rather weakly. In the late afternoon (last third of the light period), malate became most heavily labelled again during photosynthesis with14CO2.Our results indicate that the synthesis of malate by PEP-carboxylase/malate dehydrogenase is inhibited at certain times during the night/day period by end product inhibition of PEP-carboxylase, as was demonstrated byQueiroz (1967, 1968) andTing (1968) in vitro.During inhibition of the PEP-carboxylase there is no competition between the synthesis of malate and CO2-fixation by the Calvin cycle. Thus radioactivity can flow into sucrose via the Calvin cycle during this time. When the malate content of the phyllodia is low, CO2-fixation by PEP-carboxylase is not inhibited. Now this pathway dominates over photosynthesis via the Calvin cycle, for PEP-carboxylase has a higher affinity for CO2 than carboxydismutase. Therefore malate now becomes more labelled than sucrose.  相似文献   

3.
Dark Respiration during Photosynthesis in Wheat Leaf Slices   总被引:6,自引:2,他引:4       下载免费PDF全文
The metabolism of [14C]succinate and acetate was examined in leaf slices of winter wheat (Triticum aestivum L. cv Frederick) in the dark and in the light (1000 micromoles per second per square meter photosynthetically active radiation). In the dark [1,4-14C]succinate was rapidly taken up and metabolized into other organic acids, amino acids, and CO2. An accumulation of radioactivity in the tricarboxylic acid cycle intermediates after 14CO2 production became constant indicates that organic acid pools outside of the mitochondria were involved in the buildup of radioactivity. The continuous production of 14CO2 over 2 hours indicates that, in the dark, the tricarboxylic acid cycle was the major route for succinate metabolism with CO2 as the chief end product. In the light, under conditions that supported photorespiration, succinate uptake was 80% of the dark rate and large amounts of the label entered the organic and amino acids. While carbon dioxide contained much less radioactivity than in the dark, other products such as sugars, starch, glycerate, glycine, and serine were much more heavily labeled than in darkness. The fact that the same tricarboxylic acid cycle intermediates became labeled in the light in addition to other products which can acquire label by carboxylation reactions indicates that the tricarboxylic acid cycle operated in the light and that CO2 was being released from the mitochondria and efficiently refixed. The amount of radioactivity accumulating in carboxylation products in the light was about 80% of the 14CO2 release in the dark. This indicates that under these conditions, the tricarboxylic acid cycle in wheat leaf slices operates in the light at 80% of the rate occurring in the dark.  相似文献   

4.
A. D. Hanson  J. Edelman 《Planta》1971,102(1):11-25
Summary 14CO2-fixation rates in green carrot callus cultres (about 35 g chlorophyll/g fresh wt) were determined in gaseous and liquid media using a range of light intensities and CO2 concentrations. Main products of light-dependent CO2-fixation were sucrose, alanine, glutamine, serine/glycine and malic acid. In darkness, glutamine and malic acid were formed.Light CO2-fixation rates were about ten times higher than dark fixation rates and reached 50–90 mol/mg chlorophyll/h in 10000 lux, 1% CO2 in air. Net O2-evolution by the tissue was demonstrated polarographically under these conditions. Light CO2-fixation rates were linearly related to chlorophyll levels while dark fixation was independent of chlorophyll content. Lowered O2 partial pressures in gaseous conditions increased 14CO2-fixation rates. Ribulose diphosphate carboxylase and phosphoenol pyruvate carboxylase activities and their distribution in subcellular fractions were examined.When carrot tissue cultures were grown for two or four weeks on agar media lacking a carbohydrate source, in 10000 lux and 1% CO2 in either air or N2, dry weight increases were obtained although chlorophyll levels eventually declined.  相似文献   

5.
Summary When Chlorella pyrenoidosa photoassimilates 3H–14C-acetate glycollic acid rapidly becomes labelled with both tritium and 14C. The 3H/14C ratio was 10 in glycollate, (compared with 4 in the acetate added) and the only other intermediates showing similar 3H/14C ratios to glycollate were glycerate and serine. This suggests a glycollate pathway for the formation of serine was operating in Chlorella pyrenoidosa during the photoassimilation of acetate. When Chlorella pyrenoidosa assimilated 3H–14C-acetate in the dark glycollate was not labelled with either 14C or tritium. Although glycerate and serine both became labelled with 14C and tritium in the dark they did not show the high 3H/14C ratios recorded in the light. When cells were aerated with unlabelled 5% CO2 during the photoassimilation of 3H–14C-acetate, the 3H/14C ratios of glycollate, glycerate and serine were slightly decreased. Similarly, under anaerobic conditions in the light the 3H/14C ratio was decreased compared with aerobic conditions.  相似文献   

6.
In continuous cultures of Chlorella fusca under steady state conditions, the CO2-fixation rate, the ATP-level, the apparent rate of photophosphorylation as calculated from the changes in the ATP-level during light to dark or dark to light transients and the energy charge were measured at various environmental conditions. During growth the energy charge was around 0.64. CO2-assimilation and the apparent ATP-synthesis were strongly dependant on light intensity, however the ATP-level was independant on it. Since the rates of apparent ATP-synthesis and of the CO2-fixation do not seem to be strictly correlated in a logic way when environmental factors are changed and furthermore the stoichiometry of 3 ATP necessary per CO2 fixed was never achieved, the described method frequently used for procaryotes to determine the in vivo rate of phosphorylation does not give valid results in highly compartimented eukaryotic cells.  相似文献   

7.
Photosynthetic CO2-fixation of mesophyll protoplasts of lambs lettuce [Valerianella locusta (L.) Betcke] was inhibited by short time exposure to Cd+. Inhibition was due to uptake of the metal ion into the protoplasts and increased with increasing Cd2+ concentrations and the time of preincubation. A 10 min pretreatment at 2 mM Cd2+ reduced CO2-fixation by 40–60%. Inhibition of photosynthesis was independent of the light intensity to which the protoplasts were exposed. Measurement of the lightinduced electrochromic pigment absorption change at 518nm and chlorophyll fluorescence studies revealed that primary photochemical reactions associated with the thylakoid membranes were not affected by the metal ion. Also, light activation of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) was not inhibited by Cd2+. Under rate-limiting CO2 concentrations, inhibition of CO2-fixation was smaller than at Vmax of CO2 reduction indicating that the carboxylation reaction of the Calvin cycle is not susceptible to Cd2+. Cd2+ treatment of protoplasts significantly extended the lagphase of CO2-supported O2-evolution and partly inhibited light activation of the glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) and the ribulose-5-phosphate kinase (EC 2.7.1.19). Measurement of relative concentrations of [14C]-labeled Calvin cycle intermediates showed that Cd2+ caused a decrease in the 3-phosphoglycerate/triose phosphate ratio and an increase in the triose phosphate/ribulose-1,5-bisphosphate ratio. It is concluded that in protoplasts Cd2+ affects photosynthesis mainly at the level of dark reactions and that the site of inhibition may be localized in the regenerative phase of the Calvin cycle.  相似文献   

8.
In vivo tracer studies with 14C have been performed to help determine pathways of incorporation of newly assimilated nitrogen into N2-fixing cells of Anabaena cylindrica. After photosynthesis in Ar:O2:14CO2 for 30 min, the addition of N2 or NH 4 + resulted in increased rates of 14CO2-incorporation both in the light and dark, and in increased incorporation of 14C into amino acids at the expense of sucrose and sugar phosphates. Evidence of enhanced sucrose catabolism and increased pyruvate kinase activity was obtained on adding nitrogen, and, of the 14C-labelling entering the tricarboxylic acid cycle, more appeared in citrate and 2-oxoglutarate than in malate and oxaloacetate. The kinetics of 14C-incorporation into various amino acids suggest that in the light and dark the most important route of primary ammonia assimilation involves glutamine synthetase and that glutamate, aspartate, glycine and probably alanine are formed secondarily from glutamine.  相似文献   

9.
Zusammenfassung Mit Hilfe C14-markierten Acetats und Bicarbonats wurde die Kohlenstoffassimilation aus Acetat und Kohlendioxyd von Chlamydobotrys unter verschiedenen Bedingungen untersucht. Der überwiegende Teil des aus Acetat in zelleigenes Material eingebauten Kohlenstoffs stammt aus der Methylgruppe, während entwickeltes Kohlendioxyd vorwiegend aus der Carboxylgruppe freigesetzt wird. Verglichen mit der Kohlenstofffixierung unter Anaerobiose steigern aerobe Bedingungen die Kohlenstoffassimilation aus Acetat im Licht um rund 25%. Im Dunkeln wird nur 10% des Kohlenstoffs aus Acetat in zelleigene Substanz eingebaut, das sind nur 3% des unter gleichen Bedingungen im Licht assimilierten.Zur Zeit optimaler Acetatassimilation findet nur eine sehr schwache Kohlendioxydfixierung statt, diese steigt mit dem Alter der Kultur. Die CO2-Assimilation nimmt bei Acetatmangel zu; der aus CO2 unter optimalen Bedingungen fixierte Kohlenstoff beträgt nur 5% des unter optimalen Verhältnissen aus Acetat assimilierten.
Summary The carbon assimilation from radioactive labeled acetate and from NaH14CO3 by Chlamydobotrys was studied under different conditions. Most of the carbon assimilated from acetate in the light comes from the methyl group, while the CO2 produced was derived mainly from the carboxyl carbon. In light under aerobic conditions the carbon assimilation from acetate is higher by 25% than under anaerobic conditions. In the dark only 10% of the total acetate-carbon utilized are incorporated into cell material; that is only 3% of the total acetate carbon incorporated in light. During the period of high acetate assimilation the photosynthetic fixation of CO2 is extremely weak. At acetate deficiency CO2-fixation rises, but reaches only 5% of the carbon assimilated from acetate under optimum conditions.
  相似文献   

10.
Green Light Drives CO2 Fixation Deep within Leaves   总被引:5,自引:0,他引:5  
Maximal l4CO2-fixation in spinach occurs in the middle of thepalisade mesophyll [Nishio et al. (1993) Plant Cell 5: 953],however, ninety percent of the blue and red light is attenuatedin the upper twenty percent of a spinach leaf [Cui et al. (1991)Plant Cell Environ. 14: 493]. In this report, we showed thatgreen light drives 14CO2-fixation deep within spinach leavescompared to red and blue light. Blue light caused fixation mainlyin the palisade mesophyll of the leaf, whereas red light drovefixation slightly deeper into the leaf than did blue light.14CO2-fixation measured under green light resulted in less fixationin the upper epidermal layer (guard cells) and upper most palisademesophyll compared to red and blue light, but led to more fixationdeeper in the leaf than that caused by either red or blue light.Saturating white, red, or green light resulted in similar maximal14CO2-fixation rates, whereas under the highest irradiance ofblue light given, carbon fixation was not saturated, but itasymptotically approached the maximal 14CO2-fixation rates attainedunder the other types of light. The importance of green lightin photosynthesis is discussed. 1Supported in part by grants from Competitive Research GrantsOffice, U.S. Department of Agriculture (Nos. 91-37100-6672 and93-37100-8855).  相似文献   

11.
The products of short time photosynthesis and of enhanced dark 14CO2 fixation (illumination in helium prior to addition of 14CO2 in dark) by Chlorella pyrenoidosa and Anacystis nidulans were compared. Glycerate 3-phosphate, phosphoenolpyruvate, alanine, and aspartate accounted for the bulk of the 14C assimilated during enhanced dark fixation while hexose and pentose phosphates accounted for the largest fraction of isotope assimilated during photosynthesis. During the enhanced dark fixation period, glycerate 3-phosphate is carboxyl labeled and glucose 6-phosphate is predominantly labeled in carbon atom 4 with lesser amounts in the upper half of the C6 chain and traces in carbon atoms 5 and 6. Tracer spread throughout all the carbon atoms of photosynthetically synthesized glycerate 3-phosphate and glucose 6-phosphate. During the enhanced dark fixation period, there was a slow formation of sugar phosphates which subsequently continued at 5 times the initial rate long after the cessation of 14CO2 uptake. To explain the kinetics of changes in the labelling patterns and in the limited formation of the sugar phosphates during enhanced dark CO2 fixation, the suggestion is made that most of the reductant mediating these effects did not have its origin in the preillumination phase.

It is concluded that a complete photosynthetic carbon reduction cycle operates to a limited extent, if at all, in the dark period subsequent to preillumination.

  相似文献   

12.
G. Corduan 《Planta》1970,91(4):291-301
Summary It is possible to obtain autotrophic callus cultures by inhibiting cell respiration. During a first passage of four weeks the cultures synthesized chlorophyll on an agar-medium with a minimum of organic substances such as sugar, amino acids and vitamins. In the second passage these cultures were kept on the same medium but were aerated with a mixture of 99% N2 and 1% CO2. In the third and last passage the medium contained only mineral substances and the same mixture of N2 and CO2 was used for aeration. This pure mineral medium was supplemented with the Hoagland's solution.These autotrophic callus cultures were grown for about two years under these conditions and showed a growth quotient of ten.Three different groups of tissues were taken for the 14CO2-fixation. The first group was grown for four weeks on a heterotrophic medium and aerated with O2. This is the socalled respirating group. The second and third group were both aerated with the mixture of N2/CO2 but they were grown on different mediums. One of these groups was grown on a heterotrophic medium for four weeks: these are heterotrophic photosynthesizing tissues. The third group was grown on a pure mineral medium, and these are the autotrophic photosynthesizing callus tissues.Respirating tissues are different from photosynthesizing cultures in respect to the quantity of light-induced CO2-fixation.The thin-layer chromatograms reveal the difference between heterotrophic and autotrophic tissues. In the light dependent 14CO2-incorporation the difference is in the amounts of the labelled amino acids glycine and serine. In the dark dependent incorporation the difference is found in the amount of the labelled amino acid aspartic acid. The more autotrophic these tissues are, the higher the level of the CO2-fixation in these amino acids is.

Mit Hilfe der Deutschen Forschungsgemeinschaft.  相似文献   

13.
Various stages of the life cycle of the marine brown alga Laminaria saccharina (L.) Lamour. (Laminariales, Phaeophyta) including male and female gametophytes, female gametes, zygotes and young sporophytes of different age were investigated for their potentials of carbon dioxide (14CO2) fixation. Rates of photosynthesis attain the same order of magnitude in all stages. Photosynthetic 14CO2-fixation is accompanied by a substantial light independent carbon assimilation. This is confirmed by rate determinations of the equivalent carboxylating enzymes present in the plants, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoenolpyruvate carboxokinase (EC 4.1.1.32) as well as by chromatographic analyses of the appropriate [14C]-assimilate patterns.Abbreviations RuBP-C ribulose-1,5-bisphosphate carboxylase - PEP-CK phosphoenolpyruvate carboxykinase - PEP phosphoenolpyruvate - PS photosynthesis - DF dark fixation  相似文献   

14.
Manfred Kluge 《Planta》1971,98(1):20-30
Summary The distribution of radioactivity between the products of 14CO2 light fixation in phyllodia of Bryophyllum tubiflorum could be influenced experimentally by manipulating the malic acid content of the cells. Accelerating the deacidification of the tissue during the light period by application of higher light intensities accelerated the increase of malate labelling and the decrease of the sucrose labelling after 14CO2 light fixation under our standard conditions (10 min preillumination, 15 min 14CO2 light fixation, 8000 lux).In other experiments different malate contents of the tissues were induced by treating the phyllodia with different temperatures during the night period. In the morning, phyllodia with low malate content transferred most of the label into malate, and phyllodia with high malate content incorporated most of the 14C radioactivity into sugars. However, this was true only after preillumination of 1 hour. When the phyllodia fixed 14CO2 without preillumination, no differences in the labelling patterns between acidified and non-acidified phyllodia could be observed.In experiments using leaf tissue slices of Bryophyllum daigremontianum we could again observe that malate was labelled more heavily in the deacidified tissue than in the acidified controls, with less radioactivity being transferred into phosphate esters and sugars. The rates of 14CO2 light fixation were identical in tissue slices with high and low malate content. However, the rates of CO2 dark fixation in the acidified samples were clearly lower than those in the deacidified ones. The low rate of CO2 dark fixation in acidified samples could not be inhibited by an inhibitor of PEP-carboxylase as the high CO2 dark fixation rate of the deacidified tissue could be inhibited.The results are discussed in relation to the feed back inhibition of PEP-carboxylase in vivo by malate. Compartmentation also seemed to be involved in controlling the flow of carbon during CO2 light fixation in succulent tissue.  相似文献   

15.
When photosynthesis of the blue-green alga Anacystis nidulans was measured as 14CO2-fixation, the inhibitory effect of DCMU at low concentrations was greatest when mainly Photosystem 1 (PS 1) (excitation at 446 or 687 nm) was operative. At concentrations above 10-6M the inhibition on 14CO2-fixation was greatest when mainly Photosystem 2 (PS 2) was operative (excitation at 619). During excitation of PS 1, the excretion of glycolate was stimulated at low concentrations of DCMU (5 × 10-8M and lower), while higher concentrations inhibited excretion. All concentrations of DCMU inhibited glycolate excretion when mainly PS 2 was excited. The curves showing the relative effect of DCMU on the two photosystems, measured as PS 1/PS 2, had opposite shapes for 14CO2-fixation and glycolate excretion. An increase in 14CO2-fixation coincided with a decrease in glycolate excretion and vice versa. It appears that the increased rate of photosynthesis when mainly PS 1 was operative relative to that when mainly PS 2 was excited, increases the consumption of glycolate in an oxidation process associated with the excitation of PS 1, resulting in less excretion of glycolate to the medium. The influence of DCMU inhibition on labelled amino acid pools connected to the glycolate pathway (glycine-serine) is quite similar to that for 14CO2-fixation. At concentrations below 10-6M DCMU, inhibition of 14CO2- incorporation into the amino acids was greatest when PS 1 was excited, while at the higher concentrations tested, inhibition was greater when PS 2 was excited. We conclude that the metabolism of glycine and serine is closely connected to the rate of photosynthesis.  相似文献   

16.
In the leaves (but not corms) of the submerged aquatic plant Isoetes howellii, malic acid concentration fluctuates from 1–3 mg g–1 FW in the evening to 7–13 mg g–1 FW in the morning. Associated with this is a change in pH (a.m. pH 3–4 vs. p.m. pH 5–6) and titratable acidity (75–200 μ eq g–1 FW change in acidity between morning and evening) of the plant extract. 14CO2-fixation experiments indicate that carbon is fixed in both the light and the dark, though the amount of carbon fixed in the light is more than double that fixed in the dark. Autoradiographs show 89% of dark-fixed CO2 ends up in malic acid and the remainder in citric acid, whereas these two acids constitute less than 5% of the light-fixation products. It is suggested that CAM metabolism in this aquatic species may be related to the lower availability of CO2 for photosynthesis during the day than during the night in its aquatic environment.  相似文献   

17.
Photosynthetic CO2-fixation in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts during induction is markedly inhibited by 0.4 millimolar sulfite. Sulfate at the same concentration has almost no effect. The 14CO2-fixation pattern indicates that the primary effect of sulfite is inhibition of the reaction catalyzed by ribulose bisphosphate carboxylase and a stimulation of export of intermediates out of the chloroplasts. Inhibition of light modulation of stromal enzyme activity does not appear to account for the toxicity of SO2 in this Pisum variety. Arsenite at 0.2 millimolar concentrations inhibits light activation and inhibits photosynthetic CO2 fixation. The 14CO2-fixation pattern indicates that the primary effect of arsenite is inhibition of light activation of reductive pentose phosphate pathway enzyme activity.  相似文献   

18.
A chlorophyll deficient mutant of Hordeum vulgare L. was investigated with respect to its transpiration response to light pulses. Broad band blue light. 380–500 nm, caused a significant transpiration response, while broad band red light did not. The transpiration response to changes in the ambient CO2-concentration was the same in the chlorophyll deficient mutant as in green plants. The absence of a transpiration response to red light in the mutant was therefore not the result of a defective CO2-response. It is concluded that the specific blue light response is not mediated via photosynthetic CO2-fixation. The nature of the blue light response is discussed.  相似文献   

19.
The effect of oxygen concentration on the rate of CO2-uptake in continuous and intermittent light was studied as well as the CO2-fixation during a short dark period after light was turned off. In addition the dark respiration and the CO2-compensation point of attached and detached corn leaves were determined. Leaves of 4 to 22-day old plants were used as experimental material. A closed circuit system of an infrared carbon dioxide analyzer was employed to measure the rate of CO2-exchange. It was found that in an atmosphere consisting of 100 % oxygen, there was about 50 per cent inhibition of the rate of CO2-uptake in continuous and intermittent light compared to that in an atmosphere consisting of 21% oxygen. The same was true of the rate of CO2-fixation in darkness during a short period after the light was turned off. Since the response to oxygen concentration of the CO2-uptake in light and of the CO2-fixation in darkness after the light was turned off were similar, it is concluded that the fixation of CO2 in the short dark period represents an over- shoot of photosynthesis. The rate of dark respiration was little affected by the oxygen concentration in the ranges used in the experiments. The carbon dioxide compensation point which has been observed in leaves of 4 to 14-day old plants was not influenced by either oxygen concentration or light intensity. Since the changes in the rate of CO2-uptake due to changes in the concentration of oxygen and light intensity had no effect on the CO2-compensation point, it is concluded that a reabsorption of respiratory CO2 by photosynthesis could not account for the low value of this point. These results are interpreted as a further corroboration of the statement that the leaves of corn lack the process of photorespiration and that dark respiration is inhibited in light. It was observed that the rate of the CO2-uptake gradually increased in plants which were from 4 to 22-days old. The inhibitory effect of high concentration of oxygen on the rate of CO2-uptake was relatively higher in old plants than in young ones.  相似文献   

20.
Refixation of xylem sap CO2 in Populus deltoides   总被引:1,自引:0,他引:1  
Vascular plants have respiring tissues which are perfused by the transpiration stream, allowing solubilization of respiratory CO2 in the xylem sap. The transpiration stream could provide a conduit for the internal delivery of respiratory CO2 to leaves. Trees have large amounts of respiring tissues in the root systems and stems, and may have elevated levels of CO2 in the xylem sap which could be delivered to and refixed by the leaves. Xylem sap from the shoots of three Populus deltoides trees had mean dissolved inorganic carbon concentrations (CO2+H2CO3+HCO?3) ranging from 0. 5 to 0. 9 mM. When excised leaves were allowed to transpire 1 mM[14C]NaHCO3, 99. 6% of the label was fixed in the light. Seventy-seven percent of the label was fixed in major veins and the remainder was fixed in the minor veins. Autoradiography confirmed that label was confined to the vasculature. In the dark, approximately 80% of the transpired label escaped the leaf, the remainder was fixed in the major veins, slightly elevating dark respiration measurements. This indicates that the vascular tissue in P. deltoides leaves is supplied with a carbon source distinct from the atmospheric source fixed by interveinal lamina. However, the contribution of CO2 delivered to the leaves in the transpiration stream and fixed in the veins was only 0. 5% of atmospheric CO2 uptake. In the light 90% of the label was found in sugar, starch and protein, a pattern similar to that found for atmospheric uptake of[14C]CO2. Compared with leaves labelled in the light, leaves labelled in the dark had more label in organic acid, amino acid and protein and less label in sugar and starch. After a 5-s pulse the majority of the label fed to petioles in both the light and the dark was found in malate. The majority of the label was found in malate at 120 s in the dark; only 2% of the label was found in phosphorylated compounds at 120 s. The proportion of label found in phosphorylated compounds increased from 17% at 5 s to 80% at 120 s in the light. This suggests that CO2 delivered to leaves in the light via the transpiration stream is fixed in the veins, a small portion through dark fixation into malate, the remainder by C-3 photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号