首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The effect of synthetic rat amylin (10,100,1000 pmol/l) on glucose (10 mmol/) and arginine (10 mmol/l) -stimulated islet hormone release from the isolated perfused rat pancreas and on amylase release from isolated pancreatic acini was investigated. Amylin stimulated the insulin release during the first (+76%) and the second secretion period (+42%) at 1 nmol/l. The first phase of the glucagon release was inhibited concentration dependently by amylin and completely suppressed during the second phase. Amylin diminished the somatostatin release in a concentration dependent manner. This effect was more pronounced at the first than the second secretion period (1 nmol amylin: 1 phase: -60%, 2.phase: -22%). Amylin was without any effect on basal and CCK stimulated amylase release from isolated rat pancreatic acini. Our data suggest amylin, a secretory product of pancreatic B-cells, as a peptide with approximately strong paracrine effects within the Langerhans islet. Therefore, amylin might be involved in the regulation of glucose homeostasis.  相似文献   

3.
1. The effects of synthetic human amylin on basal and insulin-stimulated (100 and 1000 microunits/ml) rates of lactate formation, glucose oxidation and glycogen synthesis were measured in the isolated rat soleus muscle preparation incubated in the presence of various concentrations of glucose (5, 11 and 22 mM). 2. The rate of glucose utilization was increased by about 2-fold by increasing the glucose concentration from 5 to 22 mM. 3. Synthetic human amylin (10 nM) significantly inhibited (by 46-56%) glycogen synthesis, irrespective of the concentration of insulin or glucose present in the incubation medium. 4. Amylin (10 nM) did not affect insulin-stimulated rates of 2-deoxy[3H]glucose transport and phosphorylation. 5. Intraperitoneal administration of insulin (100 micrograms/kg) to rats in vivo stimulated the rate of [U-14C]glucose incorporation into glycogen in the diaphragm by about 80-fold. This rate was decreased (by 28%) by co-administration of amylin (66 micrograms/kg).  相似文献   

4.
Amylin, a peptide hormone from pancreatic beta-cells, is reported to inhibit insulin secretion in vitro and in vivo and to inhibit nutrient-stimulated glucagon secretion in vivo. However, it has been reported not to affect arginine-stimulated glucagon secretion in vitro. To resolve if the latter resulted from inactive peptide (a problem in the early literature), those experiments were repeated here with well-characterized peptide and found to be valid. In isolated perfused rat pancreas preparations, coperfusion with 1 nM amylin had no effect on arginine-, carbachol-, or vasoactive intestinal peptide-stimulated glucagon secretion. Amylin also had no effect on glucagon output stimulated by decreasing glucose concentration from 11 to 3.2 mM or on glucagon suppression caused by increasing glucose from 3.2 to 7 mM. Amylin at 100 nM had no effect in isolated islets in which glucagon secretion was stimulated by exposure to 10 mM arginine, even though glucagon secretion in the same preparation was inhibited by somatostatin. In anesthetized rats, amylin coinfusion had no effect on glucagon secretion stimulated by insulin-induced hypoglycemia. To reconcile reports of glucagon inhibition with the absence of effect in the experiments just described, anesthetized rats coinfused with rat amylin or with saline were exposed sequentially to intravenous L-arginine (during a euglycemic clamp) and then to hypoglycemia. Amylin inhibited arginine-induced, but not hypoglycemia-induced, glucagon secretion in the same animal. In conclusion, we newly identify a selective glucagonostatic effect of amylin that appears to be extrinsic to the isolated pancreas and may be centrally mediated.  相似文献   

5.
The time course of pancreatic effects of somatostatin was studied over a period of 2 h in unanesthetized unrestrained rats after administration of the peptide by intravenous infusion and by single and multiple subcutaneous injections. During infusion of 10 and 30 micrograms/kg per min, somatostatin continuously suppressed plasma insulin and plasma glucagon. Plasma glucose was significantly increased at the lower dose, but not affected at the higher dose. Single subcutaneous injections of 0.3 and 3 mg/kg decreased plasma insulin and glucagon dose-dependently for 20-60 min without affecting plasma glucose. Multiple subcutaneous injections of somatostatin (one to four doses of 3 mg/kg, administered at intervals of 30 min) caused an initial decrease of plasma insulin (at 30 min), a rebound-increase at 60 and 90 min, and a final return to control values by 120 min. Plasma glucagon remained continuously suppressed. Plasma glucose increased significantly at 60 and 90 min and tended to return towards control values thereafter. In conclusion, pancreatic B cells - but not A cells - of the rat develop tachyphylaxis to somatostatin within 2 h after multiple subcutaneous injections of the peptide. By this mode of administration, 'selective' suppression of plasma glucagon can be achieved with somatostatin in the rat.  相似文献   

6.
Helodermin stimulates glucagon secretion in the mouse   总被引:1,自引:0,他引:1  
B Ahrén 《Peptides》1989,10(3):709-711
Helodermin is structurally similar to VIP (vasoactive intestinal peptide) and PHI (peptide histidine isoleucine). Since VIP and PHI both stimulate insulin and glucagon secretion, we investigated the effects of helodermin on insulin and glucagon secretion in the mouse, both in the basal state and during administration of glucose and the cholinergic agonist carbachol. After intravenous injection at dose levels between 0.5 and 8.0 nmol/kg, helodermin markedly enhanced basal plasma glucagon levels, for example at 8 nmol/kg from 139 +/- 14 to 421 +/- 86 pg/ml (p less than 0.001) after 6 minutes, without affecting basal plasma insulin levels. Together with glucose (2.8 mmol/kg), helodermin (2 and 8 nmol/kg) augmented plasma glucagon levels but had no effect on plasma insulin levels. When injected together with the cholinergic agonist carbachol (0.16 mumol/kg), helodermin markedly potentiated the increase in plasma glucagon levels (more than three-fold; p less than 0.001), again without affecting the plasma insulin levels. Combined alpha- and beta-adrenoceptor blockade (yohimbine + L-propranolol) reduced the augmenting effect of helodermin on glucagon secretion by approximately 60%. It is concluded helodermin stimulates glucagon secretion in the mouse by an effect that is partially antagonized by combined alpha- and beta-adrenoceptor antagonism.  相似文献   

7.
Pharmacological doses of oxytocin administered in basal conditions evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin and adrenaline levels. The effects of oxytocin on plasma glucagon and adrenaline levels were potentiated by hypoglycemia. When the endogenous pancreas secretion was suppressed by cyclic somatostatin (150 micrograms/h) and exogenous glucagon (3.5 micrograms/h) and insulin (0.2 mU/kg.min) were both replaced, oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels suppressing the glucose infusion rate (GIR) in the first 60 min. On the contrary at higher insulin infusion rate (0.6 mU/kg.min) plasma glucose levels and GIR remained unaffected throughout the study. Oxytocin seems also to potentiate glucose-induced insulin secretion as evidenced by hyperglycemic glucose clamp. In conclusion, pharmacological doses of oxytocin seem to exert a prevalent hyperglycemic effect by a combined action at the liver site (as glycogenolytic agent) and at the endocrine pancreas (as a stimulatory agent of A cell secretion).  相似文献   

8.
Amylin, a 37-amino acid polypeptide, is the main component of amyloid deposits in the islets of Langerhans, and has been identified in the B-cell secretory granules. We have investigated the effect of rat amylin on the insulin and glucagon release by the isolated, perfused rat pancreas. Amylin infusion at 750 nM, markedly reduced unstimulated insulin release (ca. 50%, P less than 0.025), whereas it did not modify glucagon output. At the same concentration, amylin also blocked the insulin response to 9 mM glucose (ca. 80%, P less than 0.025) without affecting the suppressor effect of glucose on glucagon release. The inhibitory effect of amylin on glucose-induced insulin secretion was confirmed by lowering the amylin concentration (500 nM) and increasing the glucose stimulus (11 mM); again, no effect of amylin on glucagon release was observed. Finally, amylin, at 500 nM, reduced the insulin response to 3.5 mM arginine (ca. 40%, P less than 0.025) without modifying the secretion of glucagon elicited by this amino acid. It can be concluded that, in the rat pancreas, the inhibitory effect of homologous amylin on unstimulated insulin secretion, as well as on the insulin responses to metabolic substrates (glucose and arginine), favours the concept of this novel peptide as a potential diabetogenic agent.  相似文献   

9.
The effect of a two hour period of hypo- and hyperglucagonemia on a subsequent insulin-induced hypoglycemia was studied in nine healthy volunteers. Hypoglucagonemia was provoked by somatostatin (50 micrograms/h) and hyperglucagonemia by glucagon infusion (3.25 ng/kg/min) together with somatostatin, while saline alone was given as control. Hypoglycemia was induced by insulin infusion (2.4 U/h) for two hours. The hyperglycemic effect of glucagon was transient and similar nadir glucose levels were obtained in the three experiments. Preinfusion with glucagon impaired glucose recovery in spite of preserved secretion of epinephrine during restitution of blood glucose in this experiment. It is concluded, that a period of elevated glucagon levels deteriorates the restitution of blood glucose following hypoglycemia. Hyperglucagonemia, commonly apparent in poorly controlled diabetics, may therefore be of importance in explaining the impaired recovery of blood glucose seen in such patients after hypoglycemia.  相似文献   

10.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

11.
Apelin is the endogenous ligand of the G-protein coupled apj receptor. Apelin is expressed in the brain, the hypothalamus and the stomach and was recently shown also to be an adipokine secreted from the adipocytes. Although apelin has been suggested to be involved in the regulation of food intake, it is not known whether the peptide affects islet function and glucose homeostasis. We show here that the apj receptor is expressed in pancreatic islets and that intravenous administration of full-length apelin-36 (2 nmol/kg) inhibits the rapid insulin response to intravenous glucose (1 g/kg) by 35% in C57BL/6J mice. Thus, the acute (1-5 min) insulin response to intravenous glucose was 682+/-23 pmol/l after glucose alone (n=17) and 445+/-58 pmol/l after glucose plus apelin-36 (n=18; P=0.017). This was associated with impaired glucose elimination (the 5-20 min glucose elimination was 2.9+/-0.1%/min after glucose alone versus 2.3+/-0.2%/min after glucose plus apelin-36, P=0.008). Apelin (2 nmol/kg) also inhibited the insulin response to intravenous glucose in obese insulin resistant high-fat fed C57BL/6J mice (P=0.041). After 60 min incubation of isolated islets from normal mice, insulin secretion in the presence of 16.7 mmol/l glucose was inhibited by apelin-36 at 1 mumol/l, whereas apelin-36 did not significantly affect insulin secretion at 2.8 or 8.3 mmol/l glucose or after stimulation of insulin secretion by KCl. Islet glucose oxidation at 16.7 mmol/l was not affected by apelin-36. We conclude that the apj receptor is expressed in pancreatic islets and that apelin-36 inhibits glucose-stimulated insulin secretion both in vivo and in vitro. This may suggest that the islet beta-cells are targets for apelin-36.  相似文献   

12.
A A Young  M W Wang  G J Cooper 《FEBS letters》1991,291(1):101-104
Intravenous injections of 25.5 nmol rat amylin into fasted anesthetized rats caused a rapid increase in plasma lactate followed by an increase in plasma glucose; there was a transient fall in blood pressure. Subcutaneous injection of 25.5 nmol amylin also caused increases in lactate and glucose but did not change blood pressure. Similar responses were observed during somatostatin infusion and in the absence of changes in catecholamines. These results fit with a scheme in which amylin elicits muscle glycogenolysis, release of lactate, and increased hepatic gluconeogenesis due to increased supply of substrate.  相似文献   

13.
CCK is a physiological inhibitor of gastric emptying and food intake. The pancreatic peptide amylin exerts similar actions, yet its physiological importance is uncertain. Objectives were to compare the dose-dependent effects of intravenous infusion of amylin and CCK-8 on gastric emptying and food intake in rats, and to assess whether physiological doses of amylin are effective. Amylin and CCK-8 inhibited gastric emptying with mean effective doses (ED(50)s) of 3 and 35 pmol x kg(-1) x min(-1) and maximal inhibitions of 60 and 65%, respectively. Amylin and CCK-8 inhibited food intake with ED(50)s of 8 and 14 pmol x kg(-1) x min(-1) and maximal inhibitions of 78 and 69%, respectively. The minimal effective amylin dose for each effect was 1 pmol x kg(-1) x min(-1). Our previous work suggests that this dose increases plasma amylin by an amount comparable to that produced by a meal. These results support the hypothesis that amylin acts as a hormonal signal to the brain to inhibit gastric emptying and food intake and that amylin produces satiety in part through inhibition of gastric emptying.  相似文献   

14.
S Lindskog  B Ahrén 《Hormone research》1988,29(5-6):237-240
The effects of the two intrapancreatic peptides galanin and pancreastatin on basal and stimulated insulin and glucagon secretion in the mouse were compared. It was found that at 2 min after intravenous injection of galanin or pancreastatin (4.0 nmol/kg), basal plasma glucagon and glucose levels were slightly elevated. Galanin was more potent than pancreastatin to elevate basal plasma glucagon levels: they increased from 60 +/- 15 to 145 +/- 19 pg/ml (p less than 0.01) after galanin compared to from 35 +/- 5 to 55 +/- 8 pg/ml (p less than 0.05) after pancreastatin. Plasma insulin levels were lowered by galanin (p less than 0.05), but not by pancreastatin. CCK-8 (6.3 nmol/kg) or terbutaline (3.6 mumol/kg) markedly increased the plasma insulin levels. Galanin (4.0 nmol/kg) completely abolished the insulin response to CCK-8 (p less than 0.001), but pancreastatin (4.0 nmol/kg) was without effect. Galanin inhibited the insulin response to terbutaline by approximately 60% (p less than 0.01), but pancreastatin inhibited the insulin response to terbutaline by approximately 35% only (p less than 0.05). CCK-8 and terbutaline did both elevate plasma glucagon levels by moderate potencies: neither pancreastatin nor galanin could affect these responses. Thus, in the mouse, galanin and pancreastatin both inhibit basal and stimulated insulin secretion, and stimulate basal glucagon secretion. Galanin is thereby more potent than pancreastatin. The study also showed that galanin potently inhibits insulin secretion stimulated by the octapeptide of cholecystokin and by the beta 2-adrenoceptor agonist terbutaline, and that pancreastatin inhibits terbutaline-induced insulin secretion.  相似文献   

15.
In order to investigate the metabolic abnormalities in hyperosmolar diabetes from the viewpoint of insulin or glucagon, experimental hyperosmolar diabetes was produced by a combination of cortisol injection and water deprivation or only by the latter in streptozotocin-induced moderately hyperglycemic rat. They had a high blood glucose level and high plasma osmotic pressure. Fasting plasma insulin tended to decrease in the dehydrated state whether diabetic or not. Fasting plasma glucagon was increased to 0.047 +/- 0.009 nmol/l (P less than 0.05) in the non-diabetic dehydrated state (normal 0.026 +/- 0.004 nmol/l), and a similar high level of plasma glucagon was observed in the dehydrated diabetic rat (0.052 +/- 0.020 nmol/l), especially after cortisol treatment. In isolated rat islet, insulin released from the dehydrated diabetic rat at a high concentration of glucose was to some extent lower than that of diabetic rat, and released IRG vice versa. The insulin:glucagon ratio in the presence of high glucose was significantly lower in the dehydrated diabetic rat than in the normal rat (P less than 0.01). In the diabetic rat this ratio was not significantly different. This finding was also consistent with the results of in vivo experiments. Thus more catabolic hormonal changes were found in in vivo and in vitro studies in the hyperosmolar diabetic rat.  相似文献   

16.
Glucagon and its receptors have been identified within the mammalian brain, and their anatomical distribution correlates well with the distribution of opioid peptides and their receptors. To evaluate possible physiological interactions between these two peptidergic systems, we examined the effects of glucagon on two opioid responses - bradycardia and antinociception. Glucagon administered either intravenously (iv) (100-1000 micrograms/kg) or intracerebroventricularly (icv) (5 micrograms) significantly attenuated morphine-induced (200 micrograms/kg, iv) bradycardia without producing any alterations in cardiovascular parameters when given alone. Furthermore, glucagon did not antagonize the bradycardia produced by phenyldiguanide (10 micrograms/kg, iv), a non-opioid substance. Peripheral (1 mg/kg, iv) and central (5 micrograms, icv) glucagon pretreatment antagonized morphine-induced (7.5 mg/kg, intraperitoneal) antinociception by 67% and 86%, respectively, at 30 minutes (as determined by the hot plate test). Glucagon treatment alone at these doses did not alter baseline response latencies. In both cases, central injections of glucagon were more effective than iv injections in antagonizing morphine's effects. These findings demonstrate a central action for glucagon and provide the first evidence that this neuropeptide may function as an endogenous antagonist of opioid actions.  相似文献   

17.
Amylin is stored in the pancreatic beta-cell granules and cosecreted with insulin in response to nutrient stimuli. To gain further insight into control of hormonal release in beta-cell physiology, we examined whether amylin, like insulin, circulates in a high-frequency oscillatory pattern, and if it does, to compare the secretory patterns of the two hormones. Eight overnight-fasted healthy individuals were studied during intravenous glucose infusion (2.0 mg. kg(-1). min(-1)). Blood was collected every minute for 90 min and analyzed in triplicate for amylin, total amylin immunoreactivity (TAI), and insulin. Mean plasma concentrations of amylin (nonglycosylated), TAI (nonglycosylated plus glycosylated), insulin, and glucose were 2.77 +/- 1.21 pmol/l, 7.60 +/- 1.73 pmol/l, 50.4 +/- 17.5 pmol/l, and 5.9 +/- 0.3 mmol/l, respectively. The 90-min time series of amylin, TAI, and insulin were analyzed for periodicity (by spectral analysis, autocorrelation analysis, and deconvolution analysis) and regularity [by approximate entropy (ApEn)]. Significant spectral density peaks were demonstrated by a random shuffling technique in 7 (out of 7), 8 (out of 8), and 8 (out of 8) time series, respectively, whereas autocorrelation analysis revealed significant pulsatility in 5 (out of 7), 7 (out of 8), and 5 (out of 8), respectively. The dominant periodicity of oscillations determined by spectral analysis was 4.6 +/- 0.3, 4.6 +/- 0.4, and 6. 5 +/- 1.1 min/pulse, respectively (amylin vs. insulin, P = 0.017, TAI vs. insulin, P = 0.018). By deconvolution analysis, amylin and insulin periodicities were, respectively, 6.3 +/- 1.0 and 5.5 +/- 0. 6 min. By application of the regularity statistic, ApEn, 6 (out of 7), 7 (out of 8), and 6 (out of 8), respectively, were found to be significantly different from random. In conclusion, like several other hormones, circulating amylin concentrations exhibit oscillations in the secretory patterns for nonglycosylated as well as glycosylated forms. Whether the high-frequency pulsatile release of amylin is disturbed in diabetes is not known.  相似文献   

18.
The roles of glucagon and adrenal epinephrine in mediating bombesin-induced central hyperglycemia were further studied in anesthetized rats. Bombesin (10(-9) mol) injected into the third cerebral ventricle produced an increase in plasma concentrations of glucose, glucagon, and epinephrine. Prior bilateral adrenalectomy completely prevented the hyperglucagonemic and hyperglycemic responses to third cerebral ventricle injection of bombesin. These results support the view that bombesin-induced increases in plasma glucose and glucagon are fully dependent on adrenal epinephrine secretion. Furthermore, during constant intravenous infusion of somatostatin, the hyperglycemic response to third cerebral ventricle injection of bombesin was not significantly influenced despite complete inhibition of the increase in plasma glucagon. Therefore, it is suggested that bombesin-induced central hyperglycemia is mainly mediated by epinephrine itself rather than via epinephrine-stimulated glucagon secretion.  相似文献   

19.
Amylin is a 37-amino acid polypeptide co-secreted with insulin from the pancreatic beta-cells. It complements insulin's stimulation of the rate of glucose disappearance (Rd) by slowing the rate of glucose appearance (Ra) through several mechanisms, including an inhibition of mealtime glucagon secretion and a slowing of gastric emptying. To determine if endogenous amylin tonically inhibits these processes, we studied the effects of the amylin receptor blocker AC187 upon glucagon secretion during euglycemic, hyperinsulinemic clamps in Sprague-Dawley (HSD) rats, upon gastric emptying in HSD rats, and upon gastric emptying and plasma glucose profile in hyperamylinemic, and genetically obese, Lister Albany/NIH rats during a glucose challenge. Amylin blockade increased glucagon concentration, accelerated gastric emptying of liquids, and resulted in an exaggerated post-challenge glycemia. These data collectively indicate a physiologic role for amylin in glucose homeostasis via mechanisms that include regulation of glucagon secretion and gastric emptying.  相似文献   

20.
We have compared the effects of equimolar doses of intravenous somatostatin-28 (SS-28) and somatostatin-14 (SS-14) (250 micrograms and 125 micrograms, respectively) on the secretion of pancreatic polypeptide (PP), glucagon and insulin evoked by a protein-rich meal in normal subjects. Both peptides reduced the fasting plasma levels of these hormones and completely abolished their responses to the alimentary stimulus; in addition, they caused an early decrease of plasma glucose followed by a hyperglycemic phase. As compared to SS-14, SS-28 elicited a longer-lasting inhibition of PP and insulin secretion and displayed greater hypo- and hyperglycemic effects. A somatostatin-like component, similar to SS-28, has been identified in pancreatic extracts as well as in peripheral plasma. Thus, it might be hypothesized that this peptide plays a role in the control of pancreatic hormone release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号