首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transplantable mouse melanomas possess a melanotropin-sensitive adenylate cyclase system which is responsive to alpha-melanotropin, beta-melanotropin, adrenocorticotropin (ACTH) and prostaglandin E1. It was found that sensitivity to ACTH was not directed towards the ACTH activity but to the intrinsic melanotropin activity of the ACTH molecule. Therefore, the melanotropin-sensitive adenylate cyclase system is hormonally specific to the intrinsic melanotropin activity of peptide hormones and is unique in the melanoma tissue. The significance of the sensitivity to prostaglandin E1 is obscure at present. The melanotropin-sensitive adenylate cyclase requires the presence of Mg2+ or Mn2+, for its enzymic activity. Ca2+ inhibit the enzyme in the presence of a wide range of concentrations of Mg2+. The enzymic activity is ATP concentration-dependent and the saturation concentration appears to be 1 mM. The enzyme is very labile in the unfractionated tumor homogenates. A washed 11000 X g particulate fraction, representing about 30-60% of the total enzymic activity, was found to be more stable and could be stored at 5 degrees C for 2 h without appreciable loss of the activity. This fraction retained sensitivity to melanotropin, prostaglandin E1 and NaF. About 20% of the activity of the tumor homogenate could not be sedimented by centrifugation at 105000 X g for 60 min. This "soluble" fraction was not responsive to melanotropin, prostaglandin E1 and NaF and might be a degradative product produced by the fractionation. Cyclic AMP and alpha-melanotropin were able to increase the tyrosinase activity of isolated mouse melanoma-cells in vitro under the same conditions.  相似文献   

2.
3.
Transplantable mouse melanomas possess a melantropin-sensitive adenylate cyclase system which is responsive to α-melanotropin, β-melanotropin, adrenocorticotropin (ACTH) and prostglandin E1. It was found that sensitivity to ACTH was not directed towrds the ACTH activity but to the intrinsic melanotropin activity of the ACTH molecule. Therefore, the melanotropin-sensitive adenylate cyclase system is hormonally specific to the intrinsic melanotropin activity of peptide hormones and is unique in the melanoma tissue. The significance of the sensitivity to prostaglandin E1 is obscure at present. The melanotropin-sensitive adenylate cyclase requires the presence of Mg2+ or Mn2+ for its enzymatic activity. Ca2+ inhibit the enzyme in the presence of a wide range of concentrations of Mg2+. The enzymic activity is ATP concentration-dependent and the saturation concentration appears to be 1 mM. The enzyme is very labile in the unfractionated tumor homogenates. A washed 11 000 × g particulate fraction, representing about 30–60% of the total enzymic activity, was found to be more stable and could be stored at 5°C for 2 h without appreaciable loss of the activity. This fraction retained sensitivity to melanotropin, prostaglandin E1 and NaF. About 20% of the activity of the tumor homogenate could not be sedimented by centrifugation at 105 000 × g for 60 min. This “soluble” fraction was not responsive to melanotropin, prostglandin E1 and NaF and might be a degradative product produced by the fractionation. Cyclic AMP and α-melanotropin were able to increase the tyrosinase activity of isolated mouse melanoma-cells in vitro under the same conditions.  相似文献   

4.
For the aims of studying molecular mechanisms of functioning of adenylyl cyclase signaling systems (ACS), we investigated the influence of synthetic polycationic peptides of the star-like structure (dendrons), containing 48-60 sequence of HIV-1 TAT-protein, on the functional activity of ACS components in smooth muscles of the mollusc Anodonta cygnea and in rat skeletal muscles. It has been shown that the following peptides (Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gln)2-Lys-epsilonAhx(= epsilon-aminohexanoic acid)-Cys(Acm), referred to as peptide I, (Gly-Arg-Gly-Asp-Ser-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gln)2-Lys-epsilonAhx-Cys(Acm) (peptide II), [(Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gln)2-Lys-epsilonAhx-Cys]2 (peptide III), and [(Gly-Arg-Gly-Asp-Ser-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gln)2-Lys-epsilonAhx-Cys]2 (peptide IV) inhibit in a dose-dependent manner the adenylyl cyclase (AC) activity stimulated by both nonhormanal agents (GppNHp and forskolin) and hormones, such as serotonin (mollusc) and isoproterenol (rat). Peptides III and IV (tetrameric dendrons) were most effective in comparison with peptides I and II (dimeric dendrons). The AC activity stimulated by hormones and forskolin was most sensitive to the action of dendrons. All dendrons stimulated GTP-binding activity of G-proteins: dimeric dendrons were most effective at 10(-5) M concentration, whereas tetrameric dendrons at 10(-6) M. In the presence of dendrons, the affinity of beta-antagonist [3H]-dihydroalprenolol to P-adrenergic receptor in rat muscle mem- branes was unchanged. At the same time, the affinity of beta-agonist isoproterenol to the receptor decreased, and no shift to the right was observed on the curve of isoproterenol-induced [3H]-dihydroalprenolol displacement in the presence of GTP. The obtained data show the disturbance of the coupling between the receptor and G-protein, which is the main reason of dendron inhibitory action on AC stimulation by hormones. Besides, these data demonstrated that hormones could disturb the functional activity of AC, i.e. a catalytic component of ACS.  相似文献   

5.
The effects of calmodulin and of controlled trypsin treatments on the activity of the Ca2+ pump were investigated in plasma membrane purified from radish (Raphanus sativus L.) seedlings. Treatment of the plasma membrane with ethylenediaminetetra-acetate (EDTA), which removed about two-thirds of the plasma membrane-associated calmodulin, markedly increased the stimulation of the Ca2+ pump by calmodulin. In EDTA-treated plasma membrane, stimulation by calmodulin of the Ca2+ pump activity was maximal at low free Ca2+ (2-5 [mu]M) and decreased with the increase of free Ca2+ concentration. The Ca2+ pump activity was stimulated also by a controlled treatment of the plasma membrane with trypsin: the effect of trypsin treatment depended on the concentration of both trypsin and plasma membrane proteins and on the duration of incubation. Stimulation of the Ca2+ pump activity by trypsin treatment of the plasma membrane was similar to that induced by calmodulin both in extent and in dependence on the free Ca2+ concentration in the assay medium. Moreover, the Ca2+ pump of trypsin-treated plasma membrane was insensitive to further stimulation by calmodulin, suggesting that limited proteolysis preferentially cleaves a regulatory domain of the enzyme that is involved in its activation by calmodulin.  相似文献   

6.
The involvement of calmodulin as an activator of adenylate cyclase activity was examined in isolated guinea-pig enterocytes and in a membrane preparation. In enterocytes, which responded to prostaglandin E1, vasoactive intestinal peptide and cholera toxin with a significant increase in the rate of cAMP formation trifluoperazine, a calmodulin antagonist, completely inhibited cAMP formation. In a membrane preparation adenylate cyclase activity was stimulated 10-20-fold by the GTP analog, guanosine 5'-[beta-imido]5'-triphosphate (Gpp[NH]p). Prostaglandin E1 and vasoactive intestinal peptide enhanced cAMP formation in this system by 2-3- and 1.2-1.6-fold. respectively. Addition of 200 nM calmodulin to membranes, in which endogenous calmodulin was decreased from 1.4 microgram/mg protein to 0.5 microgram/mg protein by washing with buffer containing EGTA and EDTA, resulted in a 3-4-fold increase of adenylate cyclase activity. The absolute increment in adenylate cyclase activity caused by calmodulin (10-15 pmol cAMP/min per mg protein) was approximately the same in the absence or presence of Gpp[NH]p. The apparent Ka for Gpp[NH]p (6 . 10-7 M) was not significantly changed by the addition of calmodulin. Although endogenous calcium (approx. 10 microM) in the enzyme assay was adequate to affect stimulation by calmodulin, a maximal effect was observed at a calcium concentration of 100 microM. These findings indicate that a calmodulin-sensitive form of adenylate cyclase is present in guinea-pig enterocytes, and that stimulation of cAMP formation in the intestinal mucosa may involve a calmodulin-mediated mechanism.  相似文献   

7.
The in vitro stimulation of human and rabbit erythrocyte membrane Ca2+-ATPase activity by physiological concentrations of thyroid hormone has recently been described. To extend these observations to a nucleated cell model, Ca2+-ATPase activity in a membrane preparation obtained from rabbit myocardium has been studied. Activity of 5'-nucleotidase in the preparation was increased 26-fold over that of myocardial homogenate, consistent with enrichment by sarcolemma. Mean basal enzyme activity in membranes from nine animals was 20.8 +/- 3.3 mumol Pi mg membrane protein-1 90 min-1, approximately 20-fold the activity described in rabbit red cell membranes. Exposure of heart membranes in vitro to L-thyroxine (T4) (10(-10)M) increased Ca2+-ATPase activity to 29.2 +/- 3.8 mumol Pi (P less than 0.001). Dose-response studies conducted with T4 showed that maximal stimulatory response was obtained at 10(-10) M). Hormonal stimulation was comparable for L-T4 and triiodo-L-thyronine (T3) (10(-10) M). Tetraiodothyroacetic acid was without biological activity, whereas triiodothyroacetic acid and D-T4, each at 10(-10) M, significantly decreased enzyme activity compared to control (basal) levels. The action of L-T4 on myocardial membrane Ca2+-ATPase activity was inhibited by trifluoperazine (100 microM) and the naphthalenesulfonamide W-7 (50-100 microM), compounds that block actions of calmodulin, the protein activator of membrane-associated Ca2+-ATPase. Radioimmunoassay revealed the presence of calmodulin (1.4 micrograms/mg membrane protein-1) in the myocardial membrane fraction and 0.35 micrograms/mg-1 in cytosol. Myocardial Ca2+-ATPase activity, apparently of sarcolemmal origin, is thus thyroid hormone stimulable. The hormonal responsiveness of this calcium pump-associated enzyme requires calmodulin.  相似文献   

8.
Thyroid hormone (10(-11) to 10(-10) M) stimulates plasma membrane Ca2+-ATPase activity in vitro in various tissues, including the human red cell (RBC), by a calmodulin-requiring mechanism. Bepridil and cetiedil are Ca2+ antagonists with an intracellular (calmodulin-antagonist) site of action, as well as an effect on the calcium channel in excitable tissues. We have studied the actions of bepridil and cetiedil on Ca2+-ATPase in a channel-free membrane (RBC) to determine effectiveness of these agents as inhibitors of thyroid hormone action on the enzyme. Dose-response studies showed that thyroid hormone stimulation of Ca2+-ATPase activity in vitro was significantly inhibited by as little as 2 x 10(-5) M bepridil and cetiedil. IC50 values of bepridil and cetiedil for thyroid hormone response of the enzyme were 5 x 10(-5) and 2 x 10(-5) M, respectively, whereas IC50s of these agents for enzyme activity in the absence of thyroid hormone were both 10(-4) M. Progressive addition of purified rat testis calmodulin in vitro (10-150 ng calmodulin/mg membrane protein) restored hormone responsiveness in the presence of bepridil and cetiedil. Binding of labeled thyroid hormone by RBC membranes was unaffected by bepridil and cetiedil (up to 2 x 10(-4) M). Thus, bepridil and cetiedil are Ca2+ antagonists that reversibly inhibit thyroid hormone action on human RBC Ca2+-ATPase by a calmodulin-dependent mechanism. Thyroid hormone effect on Ca2+-ATPase is more susceptible to bepridil and cetiedil inhibition than is basal enzyme activity.  相似文献   

9.
Calcium ions have been shown to play a mojor regulatory role in the release of various hormones from a wide variety of endocrine organs. More recently, in vitro evidence suggests that a calcium-binding protein, calmodulin, is also involved in the release of many hormones. So we examined the effects of several types of calmodulin antagonists on TSH-stimulated thyroid hormone release in vitro. Mouse thyroid lobes (one thyro-tracheal unit/tube) were incubated in Krebs-Ringer bicarbonate buffer at 37 degrees C for 4h. Free thyroxine (fT4) released in the incubation medium, thyroidal cAMP and calmodulin content were measured by RIA. TSH (5 mU/ml) and dibutyryl cAMP (DBC) (200 micrograms/ml) caused a 2-4 fold increase in thyroidal release of fT4. The stimulatory effects of TSH on fT4 release were significantly inhibited by trifluoprazine and prenylamine lactate at the concentration of 5 X 10(-5) M. More specific calmodulin antagonists, W-7 and W-13, were also shown to inhibit TSH stimulation of fT4 release at the concentration of 5 X 10(-5) M. In contrast, TSH stimulation of fT4 release was not depressed by non-specific antagonists, W-5 or W-12, at the same concentration as 5 X 10(-5) M. Further, W-13 also markedly inhibited DBC-stimulated fT4 release. Neither TSH nor PGI2 altered the thyroidal calmodulin content, dissociating with a marked increase in the cAMP concentration. These results suggest that calmodulin plays an important role in TSH-stimulated thyroid hormone release and further that this mechanism exists, at least in part, at the site subsequent to the generation of cAMP.  相似文献   

10.
Mahon MJ  Shimada M 《FEBS letters》2005,579(3):803-807
Parathyroid hormone (PTH) binds to its receptor (PTH 1 receptor, PTH1R) and activates multiple pathways. The PTH1R, a class b GPCR, contains consensus calmodulin-binding motifs. The PTH1R cytoplasmic tail interacts with calmodulin in a calcium-dependent manner via the basic 1-5-8-14 motif. Calcium-dependent calmodulin interactions with the cytoplasmic tails of receptors for PTH 2, vasoactive intestinal peptide, pituitary adenylate cyclase activating peptide, corticotropin releasing hormone, calcitonin, and the glucagon-like peptides 1 and 2 are demonstrated. The cytoplasmic tails of the secretin receptor and the growth hormone releasing hormone receptor either interact poorly or not at all with calmodulin, respectively. Fluphenazine, a calmodulin antagonist, enhances PTH-mediated accumulation of total inositol phosphates, suggesting that calmodulin regulates signaling via phospholipase C.  相似文献   

11.
Proximal regions of the third intracellular loop (ICL-3) are responsible for the interaction with heterotrimeric G proteins in most of the serpentine type receptors. The peptides corresponding to these regions are able to activate G proteins in the absence of hormone and to alter the transduction of hormonal signal via the respective homologous receptor. However, the molecular mechanisms of action of the peptides, their specificity to receptors and target tissues are currently not well understood. The goal of this work was to study the receptor and tissue specificity of peptides-derivatives of C-terminal regions of the ICL-3 of luteinizing hormone receptor (LHR), type 1 relaxin receptor (RXFP1), somatostatin receptors of types 1 and 2 (Som1R and Som2R), and 5-hydroxytryptamine receptors of subtype 1B and type 6 (5-HT1BR and 5-HT6R) on the functional activity of adenylyl cyclase (AC) and GppNHp-binding of G proteins in the brain, myocardium, and testis of rats. It was shown that the influence of peptides on AC and G proteins is well detected in tissues enriched in homologous receptors. The effects stimulating AC and GppNHp-binding were most pronounced in the testes for LHR peptide, in the brain for peptide 5-HT6R, and in all of the tested tissues (but mainly in the myocardium) for the RXFP1 peptide. The AC-inhibiting effects of peptides Som1R, Som2R and 5-HT1BR, as well as the stimulation of GppNHp binding induced by these peptides, were most pronounced in the brain. In the presence of the peptides, the AC effects of hormones acting via homologous receptors were significantly attenuated, while the AC effects of other hormones changed insignificantly. The findings suggest that biological activity of the peptides depends on their interaction with complementary regions of homologous receptors, which should be taken into account when developing highly selective regulators of hormonal signaling systems on the basis of these peptides.  相似文献   

12.
The relationship between calmodulin-dependent and β-adrenergic-sensitive adenylate cyclase activities was examined in membrane preparations from bovine cerebellum. Although stimulation by β-adrenergic agonists or calmodulin can occur independently, it is shown that their simultaneous presence has a strong synergistic effect on enzyme activity. Calmodulin did not influence the regulatory components of the neurotransmitter-dependent pathway as shown by the lack of effect on (1) receptor affinity, (2) GTP requirement for receptor-mediated activation, (3) rate of activation by guanyl 5′-yl imidodiphosphate [Gpp(NH)p]. Conversely, isoproterenol and guanine nucleotides did not modify to a significant extent the characteristics of enzyme stimulation by Ca2+ and calmodulin. Furthermore, calmodulin and Gpp(NH)p-dependent activities displayed different sensitivities to thermal inactivation.Our results indicate that β-adrenergic agonists and calmodulin interact with the same catalytic activity in cerebellar membranes, but presumably via two independent pathways.  相似文献   

13.
Many macrophage functions such as chemotaxis, phagocytosis, enzyme secretion, and cytotoxicity are influenced by intracellular cyclic nucleotide levels, but the regulatory mechanisms involved are poorly defined. We have developed methods that allowed us to study the activation of AC in isolated guinea pig (g.p.) macrophage membranes. AC in these membrane preparations could be stimulated approximately twofold by guanine nucleotides. We could not obtain any hormonal activation of membrane-bound AC in the absence of guanine nucleotides. In the presence of GTP, however, the hormones isoproterenol and PGE1 elicited an additional threefold rise in AC activity, which subsided after approximately 15 min. As little as 10(-8) M concentrations of these two hormones induced significant elevations of AC activity. Replacement of GTP by its nonhydrolyzable analogue Gpp(NH)p resulted in a persistent hormone-independent activation of AC, and addition of hormones enhanced this level of activation. Thus, GTP-ase activity is present in macrophage membrane preparations and serves to regulate AC activation. Hormonal stimulation of AC was receptor mediated, because the effect of the beta-adrenergic agonist isoproterenol, but not PGE1, was inhibited by the beta-adrenergic blocker propranolol. In addition, the potency series of PG corresponded to that observed for stimulation of cAMP production in intact g.p. macrophages, i.e., PGE1 = PGE2 greater than PGA1 greater than PGF2 alpha. AC activation by PG in the membrane preparation was inhibited by an alpha-adrenergic agonist, thus demonstrating one means for down regulating cAMP production in g.p. macrophages. Our studies also showed that certain hormones (e.g., beta-adrenergic agonists, PG) can exert their effect on cAMP production by stimulation of membrane-bound AC, whereas other agents such as lectins or arachidonic acid require additional intracellular components to elevate cAMP levels in macrophages. The mechanism of activation of AC by hormones in g.p. macrophage membranes appears to fit the model of a ternary complex, the components of which include the hormone receptor, AC, and guanine nucleotide regulatory protein, which transmits the signal from the receptor to AC.  相似文献   

14.
G Cros  A Molla  S Katz 《Cell calcium》1984,5(4):365-375
The recent suggestion that calmodulin (CaM) could mediate calcium inhibition of cardiac adenylate cyclase (AC) has been reassessed. Using a purified sarcolemmal preparation (SL), the influence of different concentrations of free Ca2+ (obtained using Ca2+-EGTA solutions) was studied on dog heart AC. From 10(-9) M to 10(-3) M Ca2+ reduced basal activity, as well as epinephrine (10(-4) M)- and trypsin (1.0 microgram/mL)-stimulated activities with, in the three cases, an identical IC50 of 10(-8) M. The amount of endogenous CaM in the SL, measured using a radioimmunoassay technique, was found to be 7.5 ng/mg protein. The resulting concentration of CaM in the final AC incubation medium was lower than 50 pM, indicating the lack of a significant role for endogenous CaM in the inhibition observed. The addition of exogenous CaM to the AC assay at a concentration sufficient to stimulate other CaM-dependent systems did not modify the Ca2+ inhibitory curves for basal, epinephrine (10(-4) M)-stimulated, or trypsin (1 microgram/mL)-stimulated activities. These results indicate that CaM does not play a significant role in the Ca2+ inhibition of cardiac AC and that trypsin stimulation of cardiac AC is not mediated through a CaM-dependent process.  相似文献   

15.
Triacontanol (TRIA) treatment of plasma membrane-enriched vesicles from barley ( Hordeum vulgare L., cv. Conquest) roots resulted in stimulation of membrane-associated, divalent cation-dependent ATPase activity (EC 3.6.1.3). The stimulation at physiologically active concentrations of TRIA (10−11–10−9 M ) occurred only when the vesicles were treated with TRIA in the presence of calmodulin. Octacosanol, the C28-analogue of TRIA, had no effect on divalent cation-dependent ATPase activity. Consistent with in vivo studies, simultaneous treatment of vesicles with weight equivalents of TRIA and octacosanol reduced the stimulation of ATPase activity. The effect of calmodulin on the stimulation of ATPase activity was diminished by calmidazolium, a specific inhibitor of calmodulin. Circular dichroism studies did not show a change in the α-helix content of calmodulin in the presence of TRIA. TRIA also had no apparent effect on soluble calcium-calmodulin 3',5'-cyclic nucleotide phosphodiesterase activity. Removal of excess TRIA from the medium after treatment still resulted in stimulation of divalent cation-dependent ATPase activity in the presence of calmodulin was comparable to treated vesicles from which excess TRIA had not been removed. These data further support the contention that TRIA affects membrane structure and function.  相似文献   

16.
Ca2+ stimulation of adenylyl cyclase type 8 (AC8) is mediated by calmodulin (CaM). An earlier study identified two CaM binding sites in AC8; one that was apparently not essential for AC8 activity, located at the N terminus, and a second site that was critical for Ca2+ stimulation, found at the C terminus (Gu, C., and Cooper, D. M. F. (1999) J. Biol. Chem. 274, 8012-8021). This study explores the role of these two CaM binding domains and their interaction in regulating AC8 activity, employing binding and functional studies with mutant CaM and modified AC8 species. We report that the N-terminal CaM binding domain of AC8 has a role in recruiting CaM and that this recruitment is essential to permit stimulation by Ca2+ in vivo. Using Ca2+-insensitive mutants of CaM, we found that partially liganded CaM can bind to AC8, but only fully liganded Ca2+/CaM can stimulate AC8 activity. Moreover, partially liganded CaM inhibited AC8 activity in vivo. The results indicate that CaM pre-associates with the N terminus of AC8, and we suggest that this recruited CaM is used by the C terminus of AC8 to mediate Ca2+ stimulation.  相似文献   

17.
Calcium-sensitive forms of adenylyl cyclase (AC) were revealed in most vertebrates and invertebrates and also in some unicellular organisms, in particular ciliates. We have shown for the first time that calcium cations influence the AC activity of ciliate Tetrahymena pyriformis. These cations at the concentrations of 0.2-20 microM stimulated the enzyme activity, and maximum of catalytic effect was observed at 2 microM Ca2+. Calcium cations at a concentrations of 100 microM or higher inhibited the AC activity. Calmodulin antagonists W-5 and W-7 at the concentrations of 20-100 microM inhibited the catalytic effect induced by 5 microM Ca2+ and blocked the effect at higher concentrations of Ca2+. Chloropromazine, another calmodulin antagonist, reduced Ca2+-stimulated AC activity only at the concentrations of 200-1000 microM. AC stimulating effects of serotonin, EGF and cAMP increased in the presence of 5 microM Ca2+. AC stimulating effects of EGF, cAMP and insulin decreased in the presence of 100 microM Ca2+, and AC stimulating effect of cAMP decreased also in the presence of calmodulin antagonists (1 mM). At the same time, stimulating effect of D-glucose in the presence of Ca2+ and calmodulin antagonists did not change essentially. The data obtained speak in favor of the presence of calcium-sensitive forms of AC in ciliate T. pyriformis which mediate enzyme stimulation by EGF, cAMP, insulin, and serotonin.  相似文献   

18.
Lymphocyte activation and capping of hormone receptors   总被引:1,自引:0,他引:1  
In this study both a ligand-dependent treatment [concanavalin A (Con A)] and a ligand-independent treatment [high-voltage pulsed galvanic stimulation (HVPGS)] have been used to initiate lymphocyte activation via a transmembrane signaling process. Our results show that both treatments cause the exposure of two different hormone [insulin and interleukin-2 (IL-2)] receptors within the first 5 min of stimulation. When either insulin or IL-2 is present in the culture medium, the stimulated lymphocytes undergo the following responses: (1) increased free intracellular Ca2+ activity; (2) aggregation of insulin or IL-2 receptors into patch/cap structures; (3) tyrosine-kinase-specific phosphorylation of a 32-kd membrane protein; and finally (4) induction of DNA synthesis. Further analysis indicates that hormone receptor capping is inhibited by (1) cytochalasin D, suggesting the involvement of microfilaments; (2) sodium azide, indicating a requirement for ATP production; and (3) W-5, W-7, and W-12 drugs, implying a need for Ca2+/calmodulin activity. Treatment with these metabolic or cytoskeletal inhibitors also prevents both the tyrosine-kinase-specific protein phosphorylation and DNA synthesis which normally follow hormone receptor capping. Double immunofluorescence staining shows that actomyosin, Ca2+/calmodulin, and myosin light-chain kinase are all closely associated with the insulin and IL-2 receptor cap structures. These findings strongly suggest that an actomyosin-mediated contractile system (regulated by Ca2+, calmodulin, and myosin light-chain kinase in an energy-dependent manner) is required not only for the collection of insulin and IL-2 receptors into patch and cap structures but also for the subsequent activation of tyrosine kinase and the initiation of DNA synthesis. We, therefore, propose that the exposure and subsequent patching/capping of at least one hormone receptor are required for the activation of mouse splenic T-lymphocytes.  相似文献   

19.
C Y Wang  P K Ngai  M P Walsh  J H Wang 《Biochemistry》1987,26(4):1110-1117
Fodrin, a spectrin-like actin and calmodulin binding protein, was purified to electrophoretic homogeneity from a membrane fraction of bovine brain. The effect of fodrin on smooth muscle actomyosin Mg2+-ATPase activity was examined by using a system reconstituted from skeletal muscle actin and smooth muscle myosin and regulatory proteins. The simulation of actomyosin Mg2+-ATPase by fodrin showed a biphasic dependence on fodrin concentration and on the time of actin and myosin preincubation at 30 degrees C. Maximal stimulation (50-70%) was obtained at 3 nM fodrin following 10 min of preincubation of actin and myosin. This stimulation was also dependent on the presence of tropomyosin. In the absence of myosin light chain kinase, the fodrin stimulation of Mg2+-ATPase could not be demonstrated with normal actomyosin but could be demonstrated with acto-thiophosphorylated myosin, suggesting that fodrin stimulation depends on the phosphorylation of myosin. Fodrin stimulation was shown to require the presence of both Ca2+ and calmodulin when acto-thiophosphorylated myosin was used. These observations suggest a possible functional role of fodrin in the regulation of smooth muscle contraction and demonstrate an effect on Ca2+ and calmodulin on fodrin function.  相似文献   

20.
A vasoactive intestinal peptide-sensitive adenylate cyclase in intestinal epithelial cell membranes was characterized. Stimulation of adenylate cyclase activity was a function of vasoactive intestinal peptide concentration over a range of 1 · 10−10−1 · 10−7 M and was increased six-times by a maximally stimulating concentration of vasoactive intestinal peptide. Half-maximal stimulation was observed with 4.1 ± 0.7 nM vasoactive intestinal peptide. Fluoride ion stimulated adenylate cyclase activity to a higher extent than did vasoactive intestinal peptide. Under standard assay conditions, basal, vasoactive inteetinal peptide- and fluoride-stimulated adenylate cyclase activities were proportional to time of incubation up to 15 min and to membrane concentration up to 60 μg protein per assay. The vasoactive intestinal peptide-sensitive enzyme required 5–10 mM Mg2+ and was inhibited by 1 · 10−5 M Ca2+. At sufficiently high concentrations, both ATP (3 mM) and Mg2+ (40 mM) inhibited the enzyme.Secretin also stimulated the adenylate cyclase activity from intestinal epithelial cell membranes but its effectiveness was 1/1000 that of vasoactive intestinal peptide. Prostaglandins E1 and E2 at 1 · 10−5 M induced a two-fold increase of cyclic AMP production. Vasoactive intestinal peptide was the most potent stimulator of adenylate cyclase activity, suggesting an important physiological role of this peptide in the cyclic AMP-dependent regulation of the intestinal epithelial cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号