首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allosteric enzymes are part of a unique class of enzymes which regulate metabolic pathways. On the molecular level, allosteric regulation is the result of interactions between discrete binding sites on the enzyme. In order to accommodate these multiple binding sites, allosteric enzymes have evolved with oligomeric quaternary structures. However, only a few oligomeric enzymes are known to have regulatory interactions between binding sites. Is regulatory activity an inherent property of oligomeric enzymes? The trimeric Bacillus subtilis aspartate transcarbamoylase catalyzes the first committed step of the pyrimidine biosynthetic pathway and is not known to be a regulatory enzyme. When an alanine residue is substituted for the active-site residue Arg-99 by site-specific mutagenesis, the regulatory activity of homotropic substrate cooperativity (Hill coefficient of 1.5) is observed in the resulting mutant enzyme. These results suggest that homotropic regulation may have evolved by a relatively small number of mutations to an oligomeric enzyme.  相似文献   

2.
Aldose-6-phosphate reductase (A6PRase) is a key enzyme for glucitol biosynthesis in plants from the Rosaceae family. To gain on molecular tools for enzymological studies, we developed an accurate system for the heterologous expression of A6PRase from apple leaves. The recombinant enzyme was expressed with a His-tag alternatively placed in the N- or C-terminus, thus allowing the one-step protein purification by immobilized metal affinity chromatography. Both, the N- and the C-term tagged enzymes exhibited similar affinity toward substrates, although the kcat of the latter enzyme was 80-fold lower than that having the His-tag in the N-term. Gel filtration chromatography showed different oligomeric structures arranged by the N- (dimer) and the C-term (monomer) tagged enzymes. These results, reinforced by homology modeling studies, point out the relevance of the C-term domain in the structure of A6PRase to conform an enzyme having optimal specific activity and the proper quaternary structure.  相似文献   

3.
The Mycobacterium leprae RuvA homologue (MlRuvA) was over-expressed in Escherichia coli and purified to homogeneity. The DNA-binding specificity and the functional interactions of MlRuvA with E. coli RuvB and RuvC (EcRuvB and EcRuvC) were examined using synthetic Holliday junctions. MlRuvA bound specifically to Holliday junctions and produced similar band-shift patterns as EcRuvA. Moreover, MlRuvA formed functional DNA helicase and branch-migration enzymes with EcRuvB, although the heterologous enzyme had a lower efficiency. These results demonstrate that the RuvA homologue of M. leprae is a functional branch-migration subunit.Whereas MlRuvA promoted branch-migration in combination with EcRuvB, it was unable to stimulate branch-migration-dependent resolution in a RuvABC complex. The inability to stimulate RuvC was not due to its failure to form heterologous RuvABC complexes on junctions, since such complexes were detected by co-immunoprecipitation. Most likely, the stability of the heterologous RuvABC complex and, possibly, the interactions between RuvA and RuvC were impaired, as gel-shift experiments failed to show mixed MlRuvA-EcRuvC-junction complexes. These results demonstrate that branch-migration per se and the assembly of a RuvABC complex on the Holliday junction are insufficient for RuvAB-dependent resolution of the junction by RuvC, suggesting that specific and intimate interactions between all three proteins are required for the function of a RuvABC "resolvasome".  相似文献   

4.
A general approach is suggested to describe the steady-state kinetics of the oligomeric enzymes on the base of the generalized statistical Ising model. Detailed analysis is given for the case of a oligomeric enzyme with a hierarchical supramolecular organization. A protomer of this enzyme composed of several equivalent subunits represents the quarternary level of structure. In their turn the finite or infinite number of protomers is associated into a oligomer thus creating a new "quinternary" level of the enzyme organization. The model accounts for the ligand-induced homotrophic cooperative interactions: firstly, between the neighbouring protomers and secondly, between the subunits of the same protomer. The influence of protomer conformation on the subunit state and the cooperativity induction caused by two-ligand binding are also taken into consideration. Monod-Wyman-Changeux's and Koshland's models are shown to be special limit cases of the suggested general theory.  相似文献   

5.
According to a currently accepted model, enzymes engage in high-rate sliding along DNA when searching for specific recognition sequences or structural elements (modified nucleotides, breaks, single-stranded DNA fragments, etc.). Such sliding requires these enzymes to possess sufficiently high affinity for DNA of any sequence. Thus, significant differences in the enzymes' affinity for specific and nonspecific DNA sequences cannot be expected, and formation of a complex between an enzyme and its target DNA unlikely contributes significantly in the enzyme specificity. To elucidate the factors providing the specificity we have analyzed many DNA replication, DNA repair, topoisomerization, integration, and recombination enzymes using a number of physicochemical methods, including a method of stepwise increase in ligand complexity developed in our laboratory. It was shown that high affinity of all studied enzymes for long DNA is provided by formation of many weak contacts of the enzymes with all nucleotide units covered by protein globules. Contacts of positively charged amino acid residues with internucleotide phosphate groups contribute most to such interactions; the contribution of each contact is very small and the full contact interface usually resembles interactions between oppositely charged biopolymer surfaces. In some cases significant contribution to the affinity is made through hydrophobic and/or van der Waals interactions of the enzymes with nucleobases. Overall, depending on the enzyme, such nonspecific interactions provide 5-8 orders of the enzyme affinity for DNA. Specific interactions of enzymes with long DNA, in contrast to contacts of enzymes with small ligands, are usually weak and comparable in efficiency with weak nonspecific contacts. The sum of specific interactions most often provides approximately one and rarely two orders of the affinity. According to structural data, DNA binding to any of the investigated enzymes is followed by a stage of DNA conformation adjustment including partial or complete DNA melting, deformation of its backbone, stretching, compression, bending or kinking, eversion of nucleotides from the DNA helix, etc. The full set of such changes is characteristic for each individual enzyme. The fact that all enzyme-dependent changes in DNA are effected through weak specific rather than strong interactions is very important. Enzyme-specific changes in DNA conformation are required for effective adjustment of reacting orbitals with accuracy about 10-15 degrees, which is possible only for specific DNA. A transition from nonspecific to specific DNA leads to an increase in the reaction rate (kcat) by 4-8 orders of magnitude. Thus, the stages of DNA conformation adjustment and catalysis proper provide the high specificity of enzyme action.  相似文献   

6.
The effect of high enzyme concentration on velocity curves is analysed quantitatively for both Michaelian and simple allosteric enzymes. The general principles and practical approaches developed here are applicable to other models and may provide information on enzyme function in vivo. At physiological enzyme concentrations, Michaelian enzymes display amplification properties of the same magnitude as those observed for allosteric enzymes. In terms of apparent co-operativity, this corresponds to Hill coefficients that are locally much larger than the number of interacting or non-interacting binding sites. However, compared to the Michaelian case, allosteric interactions are needed to provide a combination of both positive and negative apparent co-operativities. These effects are important for understanding the biological significance of intersubunit co-operation in oligomeric enzymes.  相似文献   

7.
Proteins and enzymes are now generally thought to be organized within the cell to form clusters in a dynamic and versatile way, and heterologous protein-protein interactions are believed to be involved in virtually all cellular events. Therefore we need appropriate tools to detect and study such interactions. Chromatographic techniques prove to be well suited for this kind of investigation. Real complexes formed between proteins can be studied by classic gel filtration. When enzymes are studied, active enzyme gel chromatography is a useful alternative. A variant of classic gel filtration is gel filtration equilibrium analysis, which is similar to equilibrium dialysis. When the association formed is only dynamic and equilibrates very rapidly, either the Hummel-Dryer method of equilibrium gel filtration or large-zone equilibrium filtration sometimes allows the interactions to be analyzed, both qualitatively and quantitatively. Very often, however, interactions between enzymes and proteins can only be evidenced in vitro in media that mimic the intracellular situation. Immobilized proteins are excellent tools for this type of research. Several examples are indeed known where the immobilization of an enzyme on a solid support does not affect its real properties, but rather changes its environment in such a way that the diffusion becomes limiting. Affinity chromatography using immobilized proteins allows the analysis of heterologous protein-protein interactions, both qualitatively and quantitatively. A useful alternative appears to be affinity electrophoresis. The latter technique, however, is exclusively qualitative. All these techniques are described and illustrated with examples taken from the literature.  相似文献   

8.
An overview of the purification of an oligomeric enzyme, an extramitochondrial acetyl-coenzyme A hydrolase from rat liver, is presented. The enzyme has been purified to homogeneity using two successive size-exclusion chromatography runs, first for the monomeric and second for the oligomeric form of the enzyme. The sequential gel-filtration steps efficiently removed the contaminants of any molecular size, first of different size from that of the monomeric form of the enzyme (K(av)=0.47 on Superdex 200) and second of different size from that of the oligomeric form (K(av)=0.33), allowing us to purify the enzyme in high purity. This strategy provides an excellent model for purifying many other oligomeric proteins including key enzymes or allosteric enzymes regulating metabolism.  相似文献   

9.
Regulation of enzyme activity in the cell: effect of enzyme concentration.   总被引:6,自引:0,他引:6  
J J Aragón  A Sols 《FASEB journal》1991,5(14):2945-2950
The rapid development in our understanding of the regulation of enzyme activity makes it a high priority to ascertain whether the behavior of purified enzymes reflects their functional characteristics in vivo. Enzyme concentration is usually the most significant difference between routine in vitro assays and in vivo conditions, as it is well known that many intracellular enzymes are present in vivo at much higher concentrations than used in vitro. Various procedures are suitable for kinetic analysis at physiological concentrations of enzyme. Those more frequently used have been cell permeabilization, the utilization of purified enzymes at concentrations close to the in vivo range, and the addition of polyethylene glycol to increase the local protein concentration. In this review we briefly summarize observations on enzymes reported to exhibit concentration-dependent activity. The effect of enzyme concentration has been most thoroughly investigated in the case of phosphofructokinase. These studies may provide insight into the regulation of this important enzyme in the cell. The implications of both homologous and heterologous protein-protein interactions for the effect of enzyme concentration and their roles in the control of enzyme activity in vivo are also discussed.  相似文献   

10.
Nevinsky  G. A. 《Molecular Biology》2004,38(5):636-662
According to the currently accepted model, enzymes searching for specific recognition sequences or structural elements (modified nucleotides, breaks, single-stranded DNA fragments, etc.) slide at a high rate along DNA. Such sliding is possible only if the enzymes possess sufficiently high affinity for all DNA, sequence notwithstanding. Therefore, significant differences in their affinity for specific and nonspecific DNA sequences are unlikely, and the formation of a complex between an enzyme and its target DNA is not a basic factor of enzyme specificity. To elucidate such factors, we have analyzed many DNA replication, DNA repair, topoisomerization, integration, and recombination enzymes using a number of physicochemical methods, including the method of stepwise increase in ligand complexity developed in our laboratory. It has been shown that high affinity of all studied enzymes for long DNAs is provided by the formation of many weak contacts of the enzyme with all nucleotide units covered by the protein globule. The main role lies in the contact between positively charged amino acid residues and internucleoside phosphate groups; however, the contribution of each contact is very small, and the full contact interface usually resembles that characteristic of interactions between oppositely charged biopolymer surfaces. In some cases, a significant contribution to the affinity is made through hydrophobic and/or van der Waals interactions of the enzymes with nucleotide bases. On the whole, such nonspecific interactions provide for five to eight orders of enzyme affinity for DNA, depending on the enzyme. Specific interactions of enzymes with long DNAs, in contrast to their contacts with small ligands, are usually weak and comparable in efficiency with weak nonspecific contacts. The sum of specific interactions most often provides for approximately one or, rarely, two orders of affinity. According to structural data, DNA binding to any of the investigated enzymes is followed by a stage of DNA conformation adjustment, which includes partial or complete DNA melting, deformation of its backbone, stretching, compression, bending or kinking, eversion of nucleotides from the DNA helix, etc. The full set of such changes is specific for each individual enzyme. The fact that all enzyme-dependent changes in DNA are effected through weak specific (rather than strong) interactions is very important. Enzyme-specific changes in DNA conformation are required for effective adjustment of reacting orbitals to an accuracy of 10°–15°, which is possible only in the case of specific DNAs. A transition from nonspecific to specific DNA leads to an increase in the reaction rate (k cat) by four to eight orders of magnitude. Thus, the stages of DNA conformation adjustment and catalysis proper provide for the high specificity of enzyme action.  相似文献   

11.
With only 688 protein-coding genes, Mycoplasma pneumoniae is one of the smallest self-replicating organisms. These bacteria use glycolysis as the major pathway for ATP production by substrate-level phosphorylation, suggesting that this pathway must be optimized to high efficiency. In this study, we have investigated the interactions between glycolytic enzymes using the bacterial adenylate cyclase-based two-hybrid system. We demonstrate that most of the glycolytic enzymes perform self-interactions, suggesting that they form dimers or other oligomeric forms. In addition, enolase was identified as the central glycolytic enzyme of M. pneumoniae due to its ability to directly interact with all other glycolytic enzymes. Our results support the idea of the formation of a glycolytic complex in M. pneumoniae and we suggest that the formation of this complex might ensure higher fluxes through the glycolytic pathway than would be possible with isolated non-interacting enzymes.  相似文献   

12.
13.
The genes for the large (rbcL) and small (rbcS) subunits of ribulose-1,5 bisphosphate carboxylase-oxygenase (RuBPCase) from the cyanobacterium Synechococcus PCC 6301, and the rbcS gene of wheat, have been expressed in Escherichia coli in order to study homologous and heterologous enzyme assembly. Synechococcus L subunits expressed in E. coli in the absence of S subunits assemble into oligomeric structures without detectable enzyme activity. Co-expression of L and S subunits, achieved after infection with an M13 recombinant phage containing the rbcS gene, restores enzyme activity, thus demonstrating the essential role of S in the formation of an active RuBPCase. The S subunit, however, is neither required for the solubility nor for the assembly of the L subunits into oligomeric forms. The specific activity of the homologous Synechococcus RuBPCase can be modulated by changing the intracellular pool size of S by phage infection. Heterologous assembly between L subunits of Synechococcus and S subunits of wheat can be demonstrated and results in a functional enzyme. The hybrid RuBPCase has approximately 10% of the activity of the homologous Synechococcus enzyme.  相似文献   

14.
X-Ray structure analysis is one of the most informative methods for investigation of enzymes. However, it does not provide quantitative estimation of the relative efficiency of formation of contacts revealed by this method, and when interpreting the data this does not allow taking into account the relative contribution of some specific and nonspecific interactions to the total affinity of nucleic acids (NA) to enzymes. This often results in unjustified overestimation of the role of specific enzyme--NA contacts in affinity and specificity of enzyme action. In recent years we have developed new approaches to analysis of the mechanisms of protein--nucleic acid interactions allowing quantitative estimation of the relative contribution of virtually every nucleotide unit (including individual structural elements) to the total affinity of enzymes to long DNA and RNA molecules. It is shown that the interaction between enzymes and NA on the molecular level can be successfully analyzed by the methods of synthesis and analysis, that is, step-by-step simplification or complication of the structure of a long NA-ligand. This approach allows the demonstration that complex formation including formation of contacts between enzymes and specific NA units can provide neither high affinity of the enzymes to NA nor the specificity of their action. Using a number of sequence-independent replication and repair enzymes specifically recognizing a modified unit in DNA and also some sequence-dependent topoisomerization and restriction enzymes as examples, it was shown that virtually all nucleotide units within the DNA binding cleft interact with the enzyme, and high affinity mainly (up to 5-7 of 7-10 orders of magnitude) is provided by many weak additive interactions between these enzymes and various structural elements of the individual NA nucleotide units. At the same time, the relative contribution of specific interactions to the total affinity of NA is rather small and does not exceed 1-2 orders of magnitude. Specificity of enzyme action is provided by the stages of the enzyme-dependent NA adaptation to the optimal conformation and directly of catalysis: kcat increases by 3-7 orders of magnitude when changing from nonspecific to specific NA. In the present work we summarized our experience in studies of enzymes by the method of step-by-step complication of the ligand structure and performed a detailed analysis of the features of this approach and its possibilities for the study of protein--nucleic acid interactions on the molecular level.  相似文献   

15.
16.
Enzymes from psychrophiles show higher catalytic efficiency in the 0-20 degrees C temperature range and often lower thermostability in comparison with meso/thermophilic homologs. Physical and chemical characterization of these enzymes is currently underway in order to understand the molecular basis of cold adaptation. Psychrophilic enzymes are often characterized by higher flexibility, which allows for better interaction with substrates, and by a lower activation energy requirement in comparison with meso/thermophilic counterparts. In their tertiary structure, psychrophilic enzymes present fewer stabilizing interactions, longer and more hydrophilic loops, higher glycine content, and lower proline and arginine content. In this study, a comparative analysis of the structural characteristics of the interfaces between oligomeric psychrophilic enzyme subunits was carried out. Crystallographic structures of oligomeric psychrophilic enzymes, and their meso/thermophilic homologs belonging to five different protein families, were retrieved from the Protein Data Bank. The following structural parameters were calculated: overall and core interface area, characterization of polar/apolar contributions to the interface, hydrophobic contact area, quantity of ion pairs and hydrogen bonds between monomers, internal area and total volume of non-solvent-exposed cavities at the interface, and average packing of interface residues. These properties were compared to those of meso/thermophilic enzymes. The results were analyzed using Student's t-test. The most significant differences between psychrophilic and mesophilic proteins were found in the number of ion pairs and hydrogen bonds, and in the apolarity of their subunit interface. Interestingly, the number of ion pairs at the interface shows an opposite adaptation to those occurring at the monomer core and surface.  相似文献   

17.
Propionyl-CoA carboxylase (PCC) is a biotin-dependent mitochondrial enzyme that catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA. PCC consists of two heterologous subunits, alpha PCC and beta PCC, which are encoded by the nuclear PCCA and PCCB genes, respectively. Deficiency of PCC results in a metabolic disorder, propionic acidemia, which is sufficiently severe to cause neonatal death. We have purified three PCCs containing pathogenic mutations in the beta subunit (R165W, E168K, and R410W) and one PCCB polymorphism (A497V) to homogeneity to elucidate the potential structural and functional effects of these substitutions. We observed no significant difference in Km values for propionyl-CoA between wild-type and the variant enzymes, which indicated that these substitutions had no effect on the affinity of the enzyme for this substrate. Furthermore, the kinetic studies indicated that mutation R410W was not involved in propionyl-CoA binding in contrast to a previous report. The three mutant PCCs had half the catalytic efficiency of wild-type PCC as judged by the kcat/Km ratios. No significant differences have been observed in molecular mass or secondary structure among these enzymes. However, the variant PCCs were less thermostable than the wild-type. Following incubation at 47 degrees C, blue native-PAGE revealed a lower oligomeric form (alpha2beta2) in the three mutants not detectable in wild-type and the polymorphism. Interestingly, the lower oligomeric form was also observed in the corresponding crude Escherichia coli extracts. Our biochemical data and the structural analysis using a beta PCC homology model indicate that the pathogenic nature of these mutations is more likely to be due to a lack of assembly rather than disruption of catalysis. The strong favorable effect of the co-expressed chaperone proteins on PCC folding, assembly, and activity suggest that propionic acidemia may be amenable to chaperone therapy.  相似文献   

18.
The expressions for relaxation time as a function of enzyme and specific ligand concentration are deduced for dissociating enzyme system 2p ? P (P is enzyme oligomer which is able to dissociate reversibly forming two identical halves p). It is assumed that ligand binding sites are equivalent and independent in each oligomeric enzyme form and the equilibrium between oligomeric forms develops rather slowly in comparison with the rate of the binding of the ligand. The kinetics of relaxation of the dissociating enzyme system 2p ? P with progressive change of the rate constants for association of oligomeric form p has been analysed in graphic form. The situations when one of the oligomeric enzyme forms is not able to bind the ligand are also considered. The principles of the analysis of relaxation kinetics of dissociating enzyme systems 2p ? P are discussed.  相似文献   

19.
Recent progress in studies of the mode of action of cytoplasmic inorganic pyrophosphatases is mainly due to the analysis of a dozen and a half structures of the apoenzyme, its complexes, and mutants. However, despite considerable research on the mechanism of action of these enzymes, many important problems remain unclear. Among them is the problem of active site interactions in oligomeric structures and their role in catalysis; this review focuses on this problem. The abundant experimental data requires generalization and comprehensive analysis. A characteristic feature of the spatial structure of inorganic pyrophosphatases is a flexible system of noncovalent interactions between protein groups penetrating the whole molecule of the oligomeric enzyme. Binding of metal ions, sulfate (an analog of the product of the enzymatic reaction), and affinity phosphorus-containing inhibitors at the active site or site-directed mutagenesis induce rearrangements in the set of hydrogen and ionic interactions, which change active site properties and in some instances, cause molecule asymmetry. In the trimeric form of Escherichia coli pyrophosphatase obtained by dissociation of a hexamer, active sites also interact with each other, which is manifested by negative cooperativity upon substrate binding. The association of trimers into the hexamer leads to perfect organization of active sites and to their coordinated functioning, probably due to the restoration of communication channels between the trimers.  相似文献   

20.
The size of the inner water cavity of reversed micelles formed in a triple system 'water-surfactant-organic solvent' can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles 'uncouple' such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceraldehyde-3-phosphate have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号